K-Nearest Neighbor

Predicting Bankruptcy

L: #late payments / year

R: expenses / income

Love thy Nearest Neighbor

- Remember all your data
- When someone asks a question,
 - -find the nearest old data point
 - return the answer associated with it

What do we mean by "Nearest"?

- Need a distance function on inputs
- Typically use Euclidean distance (length of a straight line between the points)

$$D(x^i, x^k) = \sqrt{\sum_j (x^i_j - x^k_j)^2}$$

 Distance between character strings might be number of edits required to turn one into the other

Scaling

- What if we're trying to predict a car's gas mileage?
 - \bullet f_1 = weight in pounds
 - \bullet f₂ = number of cylinders
- Any effect of f₂ will be completely lost because of the relative scales
- So, re-scale the inputs to have mean 0 and variance 1:

 $x' = \frac{x - \overline{x}}{\sigma_x}$ average standard deviation

 Or, build knowledge in by scaling features differently

Predicting Bankruptcy

$$D(x^{i}, x^{k}) = \sqrt{\sum_{j} (L^{i} - L^{k})^{2} + (5R^{i} - 5R^{k})^{2}}$$

Predicting Bankruptcy

Hypothesis

$$D(x^{i}, x^{k}) = \sqrt{\sum_{j} (L^{i} - L^{k})^{2} + (5R^{i} - 5R^{k})^{2}}$$

Hypothesis

$$D(x^{i}, x^{k}) = \sqrt{\sum_{j} (L^{i} - L^{k})^{2} + (5R^{i} - 5R^{k})^{2}}$$

Time and Space

- Learning is fast
- Lookup takes about m*n computations
 - storing data in a clever data structure (KD-tree) reduces this, on average, to log(m)*n
- Memory can fill up with all that data
 - delete points that are far away from the boundary

k-Nearest Neighbor

- Find the k nearest points
- · Predict output according to the majority

Test Domains

- Heart Disease: predict whether a person has significant narrowing of the arteries, based on tests
 - 26 features
 - 297 data points

- Auto MPG: predict whether a car gets more than 22 miles per gallon, based on attributes of car
 - 12 features
 - 385 data points

Heart Disease

Relatively insensitive to k

Heart Disease

- Relatively insensitive to k
- Normalization matters!

Auto MPG

- Relatively insensitive to k
- Normalization doesn't matter much

Auto MPG

- Now normalization matters a lot!
- Watch the scales on your graphs

Training data

Number	Lines	Line types	Rectangles	Colours	Mondrian?
1	6	1	10	4	No
2	4	2	8	5	No
3	5	2	7	4	Yes
4	5	1	8	4	Yes
5	5	1	10	5	No
6	6	1	8	6	Yes
7	7	1	14	5	No

Number	Lines	Line types	Rectangles	Colours	Mondrian?
8	7	2	9	4	

Normalised training data

Number	Lines	Line	Rectangles	Colours	Mondrian?
		types			
1	0.632	-0.632	0.327	-1.021	No
2	-1.581	1.581	-0.588	0.408	No
3	-0.474	1.581	-1.046	-1.021	Yes
4	-0.474	-0.632	-0.588	-1.021	Yes
5	-0.474	-0.632	0.327	0.408	No
6	0.632	-0.632	-0.588	1.837	Yes
7	1.739	-0.632	2.157	0.408	No

Test instance

Number	Lines	Line	Rectangles	Colours	Mondrian?
		types			
8	1.739	1.581	-0.131	-1.021	

Distances of test instance from training data

Example	Distance of test from	Mondrian?
	example	
1	2.517	No
2	3.644	No
3	2.395	Yes
4	3.164	Yes
5	3.472	No
6	3.808	Yes
7	3.490	No

Classification

1-NN Yes

3-NN Yes

5-NN No

7-NN No