K-Nearest Neighbor
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Love thy Nearest Neighbor
* Remember all your data
* When someone asks a question,
~find the nearest old data point
-return the answer associated with it
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What do we mean by "Nearest™?

* Need a distance function on inputs

» Typically use Euclidean distance (length of a
straight line between the points)

D(x', x*) = [3,(x; - x})’

)

* Distance between character strings might be
number of edits required to turn one into the other



Scaling

* What if we're trying to predict a car’s gas mileage?
o f, = weight in pounds
e f, = number of cylinders

e Any effect of f, will be completely lost because of
the relative scales

» So, re-scale the inputs to have mean 0 and
variance 1:

¢ X —X—" |average
=

O, — | standard deviation

e Or, build knowledge in by scaling features
differently




Predicting Bankruptcy
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Predicting Bankruptcy
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Hypothesis
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Hypothesis
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Time and Space

e Learning is fast
e Lookup takes about m*n computations

e storing data in a clever data structure (KD-tree)
reduces this, on average, to log(m)*n

* Memory can fill up with all that data

* delete points that are far away from the
boundary



Noise
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k-Nearest Neighbor
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e Find the k nearest points
e Predict output according to the majority



Test Domains

e Heart Disease: predict whether a person has
significant narrowing of the arteries, based on tests

e 26 features
e 297 data points

e Auto MPG: predict whether a car gets more than 22
miles per gallon, based on attributes of car

e 12 features
» 385 data points



» Relatively insensitive to k
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Heart Disease

e Relatively insensitive to k
* Normalization matters!
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Auto MPG

» Relatively insensitive to k
* Normalization doesn’t matter much
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Auto MPG

* Now normalization matters a lot!
» Watch the scales on your graphs
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Training data

Number | Lines |Line types | Rectangles | Colours | Mondrian?
1 6 1 10 4 No
2 4 2 8 5 No
3 5 2 7 4 Yes
4 5 1 8 4 Yes
) ) 1 10 ) NoO
6 6 1 38 6 Yes
7 7 1 14 ) No
Number | Lines |Line types | Rectangles | Colours | Mondrian?
8 7 2 9 4




Normalised training data

Number |Lines |Line Rectangles | Colours | Mondrian?
types
1 0.632 | -0.632 0.327 -1.021 No
2 -1.581| 1.581 -0.588 0.408 No
3 -0.474 | 1.581 -1.046 -1.021 Yes
4 -0.474 | -0.632 -0.588 -1.021 Yes
5 -0.474 | -0.632 0.327 0.408 No
6 0.632 | -0.632 -0.588 1.837 Yes
7 1.739 | -0.632 2.157 0.408 No
Test instance
Number |Lines |Line Rectangles | Colours | Mondrian?
types
8 1.739 | 1.581 -0.131 -1.021




Distances of test instance from training data

Example | Distance | Mondrian?

of test

from

example
1 2.517 No
2 3.644 No
3 2.395 Yes
4 3.164 Yes
5 3.472 No
6 3.808 Yes
7 3.490 No

Classification
1-NN
3-NN
5-NN
7-NN

Yes
Yes
No
No



