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Game Playing

Xiaojin Zhu
jerryzhu@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials , and James Skrentny]
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Overview

• two-player zero-sum discrete finite deterministic game 
of perfect information

• Minimax search

• Alpha-beta pruning

• Large games

• two-player zero-sum discrete finite NON-deterministic 
game of perfect information
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Two-player zero-sum discrete finite deterministic 
games of perfect information

Definitions:

• Zero-sum: one player’s gain is the other player’s loss.  
Does not mean fair.

• Discrete: states and decisions have discrete values

• Finite: finite number of states and decisions

• Deterministic: no coin flips, die rolls – no chance

• Perfect information: each player can see the complete 
game state.  No simultaneous decisions.
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Which of these are: Two-player zero-sum discrete finite 
deterministic games of perfect information?

[Shamelessly copied 
from Andrew Moore]

Zero-sum: one player’s gain is 
the other player’s loss.  
Does not mean fair.

Discrete: states and decisions 
have discrete values

Finite: finite number of states 
and decisions

Deterministic: no coin flips, die 
rolls – no chance

Perfect information: each 
player can see the 
complete game state.  No 
simultaneous decisions.
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Which of these are: Two-player zero-sum discrete finite 
deterministic games of perfect information?

[Shamelessly copied 
from Andrew Moore]

Zero-sum: one player’s gain is 
the other player’s loss.  
Does not mean fair.

Discrete: states and decisions 
have discrete values

Finite: finite number of states 
and decisions

Deterministic: no coin flips, die 
rolls – no chance

Perfect information: each 
player can see the 
complete game state.  No 
simultaneous decisions.

Not finite

Multiplayer

One player

Stochastic
Hidden 

Information

Involves Improbable 

Animal Behavior
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II-Nim: Max simple game

• There are 2 piles of sticks.  Each pile has 2 sticks. 

• Each player takes one or more sticks from one pile.

• The player who takes the last stick loses.

(ii, ii)
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The game tree for II-Nim

(ii ii) Max   

(i  ii) Min   (-  ii) Min   

(i i) Max   (- ii) Max   (- i) Max   (- i) Max   (- -) Max  

+1

(-  i) Min   (-  -) Min  

-1
(-  i) Min   (-  -) Min   

-1
(-  -) Min  

-1

(- -) Max  

+1
(- -) Max  

+1

Symmetry
(i ii) = (ii i)

Convention: score is w.r.t. the first 
player Max.  Min’s score = – Max

who is to move 
at this state

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score
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The game tree for II-Nim

(ii ii) Max   

(i  ii) Min   (-  ii) Min   

(i i) Max   (- ii) Max   (- i) Max   (- i) Max   (- -) Max  

+1

(-  i) Min 

+1 
(-  -) Min  

-1
(-  i) Min (-  -) Min   

-1
(-  -) Min  

-1

(- -) Max  

+1
(- -) Max  

+1

Symmetry
(i ii) = (ii i)

Convention: score is w.r.t. the first 
player Max.  Min’s score = – Max

who is to move 
at this state

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score
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The game tree for II-Nim

(ii ii) Max   

(i  ii) Min   (-  ii) Min   

(i i) Max +1 (- ii) Max 

+1 
(- i) Max   

-1 
(- i) Max   

-1 
(- -) Max  

+1

(-  i) Min 

+1 
(-  -) Min  

-1
(-  i) Min 
+1

(-  -) Min   
-1

(-  -) Min  

-1

(- -) Max  

+1
(- -) Max  

+1

Symmetry
(i ii) = (ii i)

Convention: score is w.r.t. the first 
player Max.  Min’s score = – Max

who is to move 
at this state

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score
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The game tree for II-Nim

(ii ii) Max  

-1 

(i  ii) Min  

-1 
(-  ii) Min  

-1 

(i i) Max +1 (- ii) Max 

+1 
(- i) Max   

-1 
(- i) Max   

-1 
(- -) Max  

+1

(-  i) Min 

+1 
(-  -) Min  

-1
(-  i) Min 
+1

(-  -) Min   
-1

(-  -) Min  

-1

(- -) Max  

+1
(- -) Max  

+1

Symmetry
(i ii) = (ii i)

Convention: score is w.r.t. the first 
player Max.  Min’s score = – Max

who is to move 
at this state

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score
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The game tree for II-Nim

(ii ii) Max  

-1 

(i  ii) Min  

-1 
(-  ii) Min  

-1 

(i i) Max +1 (- ii) Max 

+1 
(- i) Max   

-1 
(- i) Max   

-1 
(- -) Max  

+1

(-  i) Min 

+1 
(-  -) Min  

-1
(-  i) Min 
+1

(-  -) Min   
-1

(-  -) Min  

-1

(- -) Max  

+1
(- -) Max  

+1

Symmetry
(i ii) = (ii i)

Convention: score is w.r.t. the first 
player Max.  Min’s score = – Max

who is to move 
at this state

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Major difference from standard search: 

The opponent has control over which 

action to take, when it’s his turn.

The first player always loses, if the 
second player plays optimally
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Game theoretic value

• Game theoretic value (a.k.a. minimax value) of a node 
= the score of the terminal node that will be reached if 
both players play optimally.

• = The numbers we filled in.

• Computed bottom up

 In Max’s turn, take the max of the children (Max will 
pick that maximizing action)

 In Min’s turn, take the min of the children (Min will 
pick that minimizing action)

• Implemented as a modified version of DFS: minimax 
algorithm
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Minimax algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if ( s is a terminal state )
then return ( terminal value of s )
else 

α := – 
for each s’ in Succ(s)
     α := max( α , Min-value(s’))

return α

function Min-Value(s)
output: best-score (for Min) available from s

if ( s is a terminal state )
then return ( terminal value of s)
else 

β := 
for each s’ in Succs(s)
     β := min( β , Max-value(s’))

return β

• Time complexity?

• Space complexity?
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Minimax example
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Tic-Tac-Toe



Evaluation Function
Tic-Tac-Toe -1



Tic-Tac-Toe -1



Tic-Tac-Toe -2
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Minimax algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if ( s is a terminal state )
then return ( terminal value of s )
else 

α := – 
for each s’ in Succ(s)
     α := max( α , Min-value(s’))

return α

function Min-Value(s)
output: best-score (for Min) available from s

if ( s is a terminal state )
then return ( terminal value of s)
else 

β := 
for each s’ in Succs(s)
     β := min( β , Max-value(s’))

return β

• Time complexity? O
(bm)  bad

• Space complexity? 
O(bm)
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Next: alpha-beta pruning

Gives the same game theoretic values as 
minimax, but prunes part of the game tree.
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Alpha-beta pruning

function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)

if ( s is a terminal state )
then return ( terminal value of s )
else for each s’ in Succ(s)

α := max( α , Min-value(s’,α,β))
if ( α ≥ β ) then return β   /* pruning */

return α

function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s )

if ( s is a terminal state )
then return ( terminal value of s)
else for each s’ in Succs(s)

β := min( β , Max-value(s’,α,β))
if (β ≤ α ) then return α   /* pruning */

return β
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.
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[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.
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[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.
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[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]
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How effective is alpha-beta pruning?

• Depends on the order of successors!

• In the best case, the number of nodes to search is O
(bm/2), the square root of minimax’s cost

• Still not practical for large games like chess
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What you should know

• What is a two-player zero-sum discrete finite 
deterministic game of perfect information

• What is a game tree

• What is the minimax value of a game

• Minimax search

• Alpha-beta pruning

• Basic understanding of very large games

• How to extend minimax to non-deterministic games
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