Game Playing

Overview

- two-player zero-sum discrete finite deterministic game of perfect information
- Minimax search
- Alpha-beta pruning

Two-player zero-sum discrete finite deterministic games of perfect information

Definitions:

- Zero-sum: one player's gain is the other player's loss.
- Discrete: states and decisions have discrete values
- Finite: finite number of states and decisions
- Deterministic: no coin flips, die rolls - no chance
- Perfect information: each player can see the complete game state. No simultaneous decisions.

Which of these are: Two-player zero-sum discrete finite deterministic games of perfect information?

Zero-sum: one player's gain is the other player's loss. Does not mean fair.

Discrete: states and decisions have discrete values

Finite: finite number of states and decisions
Deterministic: no coin flips, die rolls - no chance

Perfect information: each player can see the complete game state. No simultaneous decisions.

slide 4

Which of these are: Two-player zero-sum discrete finite deterministic games of perfect information?

II-Nim: Max simple game

- There are 2 piles of sticks. Each pile has 2 sticks.
- Each player takes one or more sticks from one pile.
- The player who takes the last stick loses.
(ii, ii)

The game tree for II-Nim

The game tree for II-Nim

Two players: Max and Min

Game theoretic value

- Game theoretic value (a.k.a. minimax value) of a node $=$ the score of the terminal node that will be reached if both players play optimally.
- = The numbers we filled in.
- Computed bottom up
- In Max's turn, take the max of the children (Max will pick that maximizing action)
- In Min's turn, take the min of the children (Min will pick that minimizing action)
- Implemented as a modified version of DFS: minimax algorithm

Minimax algorithm

function Max-Value(s)
inputs:
s: current state in game, Max about to play output: best-score (for Max) available from s
if (s is a terminal state)
then return (terminal value of s)
else

$$
\alpha:=-\infty
$$

for each s' in Succ(s)

$$
\alpha:=\max (\alpha, \text { Min-value(s')) }
$$

return α
function Min-Value(s)
output: best-score (for Min) available from s
if $(s$ is a terminal state)
then return (terminal value of s)
else

$$
\beta:=\infty
$$

for each s' in Succs(s)
$\beta:=\min (\beta$, Max-value(s'))
return β

Minimax example

Tic-Tac-Toe

Evaluation Function

Tic-Tac-Toe -1

If p is not a winning position for either player,
$\ell(p)=$ (number of complete rows, columns, or diagonals that are still open for MAX) - (number of complete rows, columns, or diagonals that are still open for MIN)

If p is a win for $M A X$,
$e(p)=\infty$ (I usc ∞ here to denote a very large positive number)
If p is a win for MIN.

$$
\ell(p)=-\infty
$$

Tic-Tac-Toe -1

Tic-Tac-Toe -2

Tic-Tac-Toe -3

Minimax algorithm

function Max-Value(s)

inputs:
s: current state in game, Max about to play output: best-score (for Max) available from s
if (s is a terminal state)
then return (terminal value of s)
else

$$
\alpha:=-\infty
$$

for each s' in Succ(s)

$$
\alpha:=\max (\alpha, \text { Min-value(s')) }
$$

return α
function Min-Value(s)
output: best-score (for Min) available from s
if $(s$ is a terminal state)
then return (terminal value of s)
else

$$
\beta:=\infty
$$

for each s' in Succs(s)
$\beta:=\min (\beta$, Max-value(s'))
return β

- Time complexity? $\left(b^{m}\right) \leftarrow$ bad
- Space complexity? O(bm)

Next: alpha-beta pruning

Gives the same game theoretic values as minimax, but prunes part of the game tree.

Alpha-beta pruning

function Max-Value (s, α, β)
inputs:
s : current state in game, Max about to play
α : best score (highest) for Max along path to s
β : best score (lowest) for Min along path to s output: $\min (\beta$, best-score (for Max) available from s)
if (s is a terminal state)
then return (terminal value of s)
else for each s' in Succ(s)
$\alpha:=\max (\alpha$, Min-value(s', $\alpha, \beta))$
if $(\alpha \geq \beta)$ then return β /* pruning */
return α
function Min-Value(s, α, β)
output: max(α, best-score (for Min) available from s)
if (s is a terminal state)
then return (terminal value of s)
else for each s' in Succs(s)
$\beta:=\min (\beta$, Max-value(s', $\alpha, \beta)$)
if $(\beta \leq \alpha)$ then return $\alpha{ }^{*}$ pruning */
return β

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

$$
\begin{aligned}
& -=-\infty \\
& +=+\infty
\end{aligned}
$$

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

Alpha-beta pruning example

- Keep two bounds along the path
- α : the best Max can do on the path
- β : the best (smallest) Min can do on the path
- If a max node exceeds β, it is pruned.
- If a min node goes below α, it is pruned.

How effective is alpha-beta pruning?

- Depends on the order of successors!

- In the best case, the number of nodes to search is O ($b^{m / 2}$), the square root of minimax's cost
- Still not practical for large games like chess

What you should know

- What is a two-player zero-sum discrete finite deterministic game of perfect information
- What is a game tree
- What is the minimax value of a game
- Minimax search
- Alpha-beta pruning

