Advanced Search

Hill climbing, simulated annealing,
genetic algorithm

[Based on slides from Andrew Moore]

slide

1

Optimization problems

Previously we want a path from start to goal
= Uninformed search: g(s): Iterative Deepening
* Informed search: g(s)+h(s). A*
Now a different setting:
= Each state s has a score f(s) that we can compute

= The goal is to find the state with the highest score, or
a reasonably high score

= Do not care about the path

= This is an optimization problem

= Enumerating the states is intractable

= Even previous search algorithms are too expensive

slide 2

Examples

® N-queen: f(s) = number of conflicting queens
In state s

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

slide 3

Examples

® N-queen: f(s) = number of conflicting queens
In state s

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

® Traveling salesperson problem (TSP)
= Visit each city once, return to first city
= State = order of cities, f(s) = total mileage

slide 4

Examples

® N-queen: f(s) = number of conflicting queens
In state s

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

® Traveling salesperson problem (TSP)
= Visit each city once, return to first city
= State = order of cities, f(s) = total mileage
® Boolean satisfiability (e.g., 3-SAT)
= State = assignment to variables
Av-BvC

» f(s) = # satisfied clauses _AvCvD

BvDv-—-E
—|CV—|DV—|E
—lAV—|CVE

slide 5

1. HILL CLIMBING

slide 6

Hill climbing

Very simple idea: Start from some state s,
= Move to a neighbor t with better score. Repeat.
Question: what’s a neighbor?
= You have to define that!
* The neighborhood of a state is the set of neighbors
* Also called ‘move set’
= Similar to successor function

slide 7

Neighbors: N-queen

® Example: N-queen (one queen per column). One
possibility:

Neighborhood
of s

slide 8

Neighbors: N-queen

Example: N-gueen (one gueen per column). One
possibility: [tie breaking more promising?
= Pick the rigﬁ-most most_-coynﬂicting column;

= Move the queen in that column vertically to a

different location.
u
u 0

f(5)=1 ﬁ i

Neighborhood
of s

slide 9

Neighbors: TSP

state: A-B-C-D-E-F-G-H-A
f = length of tour

slide 10

Neighbors: TSP

state: A-B-C-D-E-F-G-H-A
f = length of tour
One possibility: 2-change

A-

B-C-D-E

-F-G-H-A

flip

>

E-D-C-B

-F-G-H-A

slide 11

Neighbors: SAT

State: (A=T, B=F, C=T, D=T, E=T)
f = number of satisfied clauses
Neighbor:

Av-BvC
—-AvCvD
BvDv-—E

—-Cv—-Dv—=E

—Av—-Cv

E

slide 12

Neighbors: SAT

State: (A=T, B=F, C=T, D=T, E=T)
f = number of satisfied clauses
Neighbor: flip the assignment of one variable

(A=F, B=F, C=T, D=T, E=T) Av—BvC
(A:T, B=T, C=T, D=T, E:T) —-AvCvD
(A=T, B=F, C=F, D=T, E=T) Bg D V;E -

_ _ _ _ _ —C V — V —
(A=T, B=F, C=T, D=F, E=T) o euE
(A=T, B=F, C=T, D=T, E=F)

slide 13

Hill climbing

® Question: What's a neighbor?

= (vaguely) Problems tend to have structures. A small
change produces a neighboring state.

= The neighborhood must be small enough for
efficiency

= Designing the neighborhood is critical. This is the
real ingenuity — not the decision to use hill climbing.

® Question: Pick which neighbor?

® Question: What if no neighbor is better than the
current state?

slide 14

Hill climbing

® Question: What's a neighbor?

= (vaguely) Problems tend to have structures. A small
change produces a neighboring state.

= The neighborhood must be small enough for
efficiency

= Designing the neighborhood is critical. This is the
real ingenuity — not the decision to use hill climbing.

® Question: Pick which neighbor? The best one (greedy)

® Question: What if no neighbor is better than the
current state? Stop. (Doh!)

slide 15

Hill climbing algorithm

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
IF f(t) < f(s) THEN stop, return s

s=t. GOTO 2.

W

Not the most sophisticated algorithm in the world.

Very greedy.
Easily stuck.

slide 16

Hill climbing algorithm

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
IF f(t) < f(s) THEN stop, return s

s=t. GOTO 2.

W

Not the most sophisticated algrithm ip~ e world.
Very greedy.
Easily stuck.

your enemy:

local
optima

slide 17

Local optima in hill climbing

Useful conceptual picture: f surface = ‘hills’ in state

space f Global optimum,
where we want to be

state

But we can'’t see the landscape all at once. Only see
the neighborhood. Climb in fog.

f

fog

state
slide 18

Local optima in hill climbing

Local optima (there can be many!)

m
Declare top- Lf

of-the-world?
—

—
/'\

state

Plateaux

Where shall I go?

///

il

State

slide 19

Local optima in hill

Declare
the wor
The rest of the lecture Is
about
o Escaping

e shall I go?

local optima

slide 20

Repeated hill climbing with random restarts

Very simple modification

1. When stuck, pick a random new start, run basic
hill climbing from there.

2. Repeat this k times.
3. Return the best of the k local optima.

Can be very effective
Should be tried whenever hill climbing is used

slide 22

Variations of hill climbing

Question: How do we make hill climbing less greedy?

slide 23

Variations of hill climbing

Question: How do we make hill climbing less greedy?

= Stochastic hill climbing
« Randomly select among better neighbors
* The better, the more likely
* Pros / cons compared with basic hill climbing?

slide 24

Variations of hill climbing

Question: How do we make hill climbing less greedy?

= Stochastic hill climbing
« Randomly select among better neighbors
* The better, the more likely
* Pros / cons compared with basic hill climbing?

Question: What if the neighborhood is too large to
enumerate? (e.g. N-queen if we need to pick both the
column and the move within it)

slide 25

Variations of hill climbing

Question: How do we make hill climbing less greedy?

= Stochastic hill climbing
« Randomly select among better neighbors
* The better, the more likely
* Pros / cons compared with basic hill climbing?

Question: What if the neighborhood is too large to
enumerate? (e.g. N-queen if we need to pick both the
column and the move within it)

= First-choice hill climbing
- Randomly generate neighbors, one at a time
* If better, take the move
* Pros / cons compared with basic hill climbing?

slide 26

Variations of hill climbing

® We are still greedy! Only willing to move upwards.
® Important observation in life:

Sometimes one Sometimes one
needs to needs to move to an
temporarily step — |inferior neighbor in
back in order to order to escape a

move forward. local optimum.

slide 27

[f each hill-climbing search has a probability p of
success, then the expected number of restarts required is 1/p. For 8-queens instances with
no sideways moves allowed, p = (.14, so we need roughly 7 iterations to find a goal (6 fail-
ures and 1 success). The expected number of steps is the cost of one successful iteration plus

(1—p)/p times the cost of failure, or roughly 22 steps in all. When we allow sideways moves,
1/0.94 ~ 1.06 iterations are needed on average and (1 x 21)+ (0.06/0.94) x 64 =~ 25 steps.
For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three mil-
lion queens, the approach can find solutions in under a minute.?

2. SIMULATED ANNEALING

slide 29

Simulated Annealing

anneal

To subject (glass or metal) to a process of heating
and slow cooling in order to toughen and reduce
brittleness.

slide 30

Simulated Annealing

O0hwhE

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

slide 31

Simulated Annealing

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

O0hwhE

How to choose the small probability?
idea 1: p=0.1

slide 32

Simulated Annealing

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

O0hwhE

How to choose the small probability?
idea 1: p=0.1
idea 2: p decreases with time

slide 33

Simulated Annealing

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

O0hwhE

How to choose the small probability?
idea 1: p=0.1
idea 2: p decreases with time
idea 3: p decreases with time, also as the ‘badness’
If(s)-f(t)| increases

slide 34

Simulated Annealing

¢ If f(t) better than f(s), always accept t
¢ Otherwise, accept t with probability

exp (_ [F(s)-f(®) |j 4 Boltzmann

distribution
Temp

slide 35

Simulated Annealing

If f(t) better than f(s), always accept t
Otherwise, accept t with probability

exp (_ [F(s)-f(®) |J 4 Boltzmann

distribution
Temp

Temp is a temperature parameter that ‘cools’
(anneals) over time, e.g. Temp<Temp*0.9 which
gives Temp:(To)#iteration
= High temperature: almost always accept any t
= Low temperature: first-choice hill climbing

If the ‘badness’ (formally known as energy difference)
If(s)-f(t)| is large, the probability is small.

slide 36

SA algorithm

// assuming we want to maximize f()
current = Initial-State(problem)
fort=1to o do

T = Schedule(t) ; / T is the current temperature, which is
monotonically decreasing with t

If T=0 then return current ; //nalt when temperature = 0

next = Select-Random-Successor-State(current)

deltakE = f(next) - f(current) ; // If positive, next is better
than current. Otherwise, next is worse than current.

If deltaE > O then current = next ; // always move to a
better state

else current = next with probability p = exp(deltak /
T);//lasT>0,p~> 0;as deltaE > -, p >0

end
slide 37

Simulated Annealing issues

Cooling scheme important

Neighborhood design is the real ingenuity, not the
decision to use simulated annealing.

Not much to say theoretically

= With infinitely slow cooling rate, finds global
optimum with probability 1.

Proposed by Metropolis in 1953 based on the
analogy that alloys manage to find a near global
minimum energy state, when annealed slowly.

Easy to implement.
Try hill-climbing with random restarts first!

slide 38

GENETIC ALGORITHM

http://www.genetic-programming.org/
slide 39

Evolution

Survival of the fittest, a.k.a. natural selection

Genes encoded as DNA (deoxyribonucleic acid), sequence of
bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)

The chromosomes from the parents exchange randomly by a
process called crossover. Therefore, the offspring exhibit some
traits of the father and some traits of the mother.

= Requires genetic diversity among the parents to ensure
sufficiently varied offspring

A rarer process called mutation also changes the genes (e.qg.
from cosmic ray).

= Nonsensical/deadly mutated organisms die.
= Beneficial mutations produce “stronger” organisms
= Neither: organisms aren’t improved.

slide 40

Natural selection

Individuals compete for resources

Individuals with better genes have a larger chance to
produce offspring, and vice versa

After many generations, the population consists of
lots of genes from the superior individuals, and less
from the inferior individuals

Superiority defined by fithess to the environment
Popularized by Darwin

Mistake of Lamarck: environment does not force an
Individual to change its genes

slide 41

Genetic algorithm

Yet another Al algorithm based on real-world analogy
Yet another heuristic stochastic search algorithm

Each state s is called an individual. Often (carefully)
coded up as a string.

(32752411)

_~NW OO 40

The score f(s) is called the fithess of s. Our goal is to
find the global optimum (fittest) state.

At any time we keep a fixed number of states. They
are called the population. Similar to beam search.

slide 42

Individual encoding

® The “DNA”

¢ Satisfiability problem Av—BvC
(ABCOB=FTTY -

* TSP —-Cv—-Dv—-E
A-E-D-C-B-F-G-H-A ~Av-CVE

slide 43

Genetic algorithm

® Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552

327752411

24415124

32543213

(a)
Initial Population

slide 44

® Genetic algorithm: a special way to generate

Genetic algorithm

neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552

24 31%

X

327752411 Q
24415124 U 26%
32543213 1 14%

(a)
Initial Populati

Number of non-
attacking pairs

(b)

Fitness Func

32752411

24?48552

32752411

24415124

(c)

Selection

prob. reproduction

oc fitness

slide 45

Genetic algorithm

® Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552 | 24 31% | 32752411 >—< 32748552

|

32752411 [23 29% 247548552 24752411

/

24415124 U 26% 32752411 >._< 32752124

32543213 1 14% 24415124 24415411

(a)
Initial Populati

(b) (c) (d)

Fitness Func Selection . Cross—Over

Number of non- prob. reproduction
attacking pairs oc fitness

—> Next generation

slide 46

® Genetic algorithm: a special way to generate

Genetic algorithm

neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552 | 24 31%
32752411 %
24415124 }‘
32543213 1 14%

(a)
Initial Populati

Number of non-
attacking pairs

(b)

Fitness Func

32752411

24?48552

32752411

24415124

(c)

Selection

prob. reproduction

o fitness

32748552

32746152

24752411

24752411

32752124

3252124

24415411

(d)

Cross—Over

24415417

(e)

Mutation

—> Next generation

slide 47

Genetic algorithm (one variety)

Lets,, ..., Sy be the current population

Let p; = f(s)) / Z; 1(s;) be the reproduction probability
FOR k = 1: k<N; k+=2

« parentl = randomly pick according to p

« parent2 = randomly pick another

« randomly select a crossover point, swap strings
of parents 1, 2 to generate children t[k], t[k+1]

FOR k = 1; k<=N: k++

« Randomly mutate each position in t[k] with a
small probability (mutation rate)

The new generation replaces the old: { s }<{t }.
Repeat.

slide 48

Proportional selection

° pi=1(s)/ % 1(s)
* I f(s;) = 5+20+11+8+6=50
® p,;=5/50=10%

Individual | Fithess |Prob.
A 5 10%
B 20 40%
C 11 22%
D 8 16%
E 6 12%

slide 49

Variations of genetic algorithm

Parents may survive into the next generation

Use ranking instead of f(s) in computing the
reproduction probabilities.

Cross over random bits instead of chunks.

Optimize over sentences from a programming
language. Genetic programming.

slide 50

Genetic algorithm issues

State encoding is the real ingenuity, not the decision
to use genetic algorithm.

Lack of diversity can lead to premature convergence
and non-optimal solution

Not much to say theoretically

= Cross over (sexual reproduction) much more
efficient than mutation (asexual reproduction).

Easy to implement.
Try hill-climbing with random restarts first!

slide 51

