Advanced Search Hill climbing, simulated annealing, genetic algorithm

Optimization problems

- Previously we want a path from start to goal
 - Uninformed search: g(s): Iterative Deepening
 - Informed search: g(s)+h(s): A*
- Now a different setting:
 - Each state s has a score f(s) that we can compute
 - The goal is to find the state with the highest score, or a reasonably high score
 - Do not care about the path
 - This is an optimization problem
 - Enumerating the states is intractable
 - Even previous search algorithms are too expensive

Examples

N-queen: f(s) = number of conflicting queens in state s

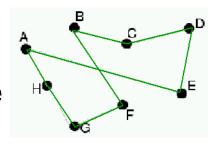
Note we want s with the lowest score f(s)=0. The techniques are the same. Low or high should be obvious from context.

Examples

 N-queen: f(s) = number of conflicting queens in state s

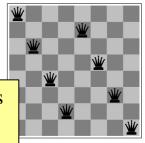
Note we want s with the lowest score f(s)=0. The techniques are the same. Low or high should be obvious from context.

- Traveling salesperson problem (TSP)
 - Visit each city once, return to first city
 - State = order of cities, f(s) = total mileage



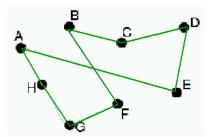
Examples

N-queen: f(s) = number of conflicting queens in state s



Note we want s with the lowest score f(s)=0. The techniques are the same. Low or high should be obvious from context.

- Traveling salesperson problem (TSP)
 - Visit each city once, return to first city
 - State = order of cities, f(s) = total mileage



- Boolean satisfiability (e.g., 3-SAT)
 - State = assignment to variables
 - f(s) = # satisfied clauses

$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$

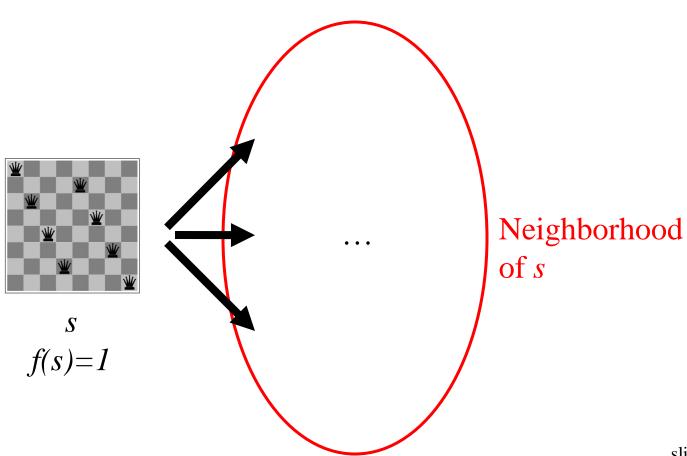
1. HILL CLIMBING

Hill climbing

- Very simple idea: Start from some state s,
 - Move to a neighbor t with better score. Repeat.
- Question: what's a neighbor?
 - You have to define that!
 - The neighborhood of a state is the set of neighbors
 - Also called 'move set'
 - Similar to successor function

Neighbors: N-queen

Example: N-queen (one queen per column). One possibility:



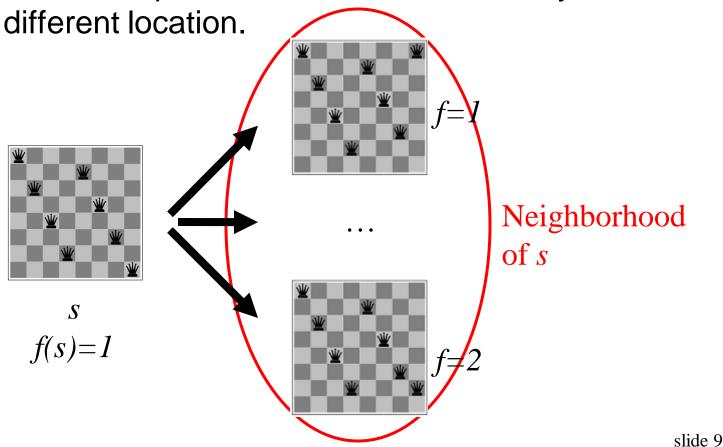
slide 8

Neighbors: N-queen

Example: N-queen (one queen per column). One possibility: tie breaking more promising?

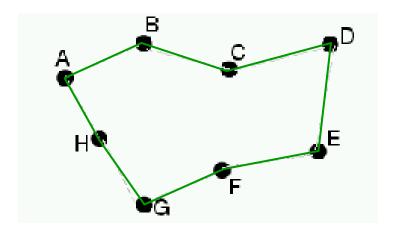
Pick the right-most most-conflicting column;

Move the queen in that column vertically to a



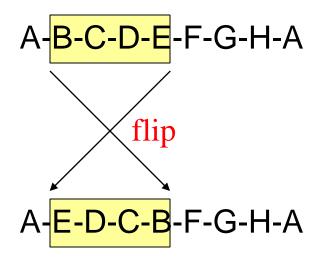
Neighbors: TSP

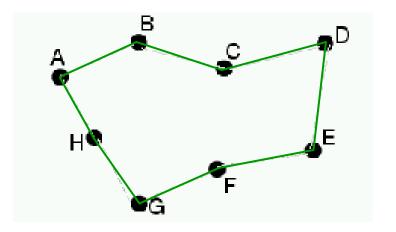
- state: A-B-C-D-E-F-G-H-A
- f = length of tour

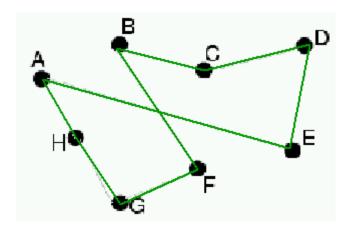


Neighbors: TSP

- state: A-B-C-D-E-F-G-H-A
- f = length of tour
- One possibility: 2-change







Neighbors: SAT

- State: (A=T, B=F, C=T, D=T, E=T)
- f = number of satisfied clauses
- Neighbor:

$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$

Neighbors: SAT

- State: (A=T, B=F, C=T, D=T, E=T)
- f = number of satisfied clauses
- Neighbor: flip the assignment of one variable

$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$

Hill climbing

- Question: What's a neighbor?
 - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
 - The neighborhood must be small enough for efficiency
 - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.
- Question: Pick which neighbor?
- Question: What if no neighbor is better than the current state?

Hill climbing

- Question: What's a neighbor?
 - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
 - The neighborhood must be small enough for efficiency
 - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.
- Question: Pick which neighbor? The best one (greedy)
- Question: What if no neighbor is better than the current state? Stop. (Doh!)

Hill climbing algorithm

- 1. Pick initial state s
- 2. Pick *t* in neighbors(*s*) with the largest *f*(*t*)
- 3. IF $f(t) \le f(s)$ THEN stop, return s
- 4. s = t. GOTO 2.
- Not the most sophisticated algorithm in the world.
- Very greedy.
- Easily stuck.

Hill climbing algorithm

- 1. Pick initial state s
- 2. Pick *t* in neighbors(*s*) with the largest *f*(*t*)
- 3. IF $f(t) \le f(s)$ THEN stop, return s
- 4. s = t. GOTO 2.

Not the most sophisticated algorithm in e world.

Very greedy.

Easily stuck.

your enemy:

local

optima

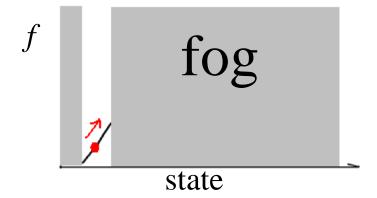
Local optima in hill climbing

Useful conceptual picture: f surface = 'hills' in state space

Global optimum, where we want to be

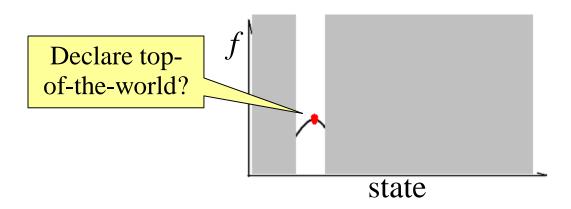
 But we can't see the landscape all at once. Only see the neighborhood. Climb in fog.

state

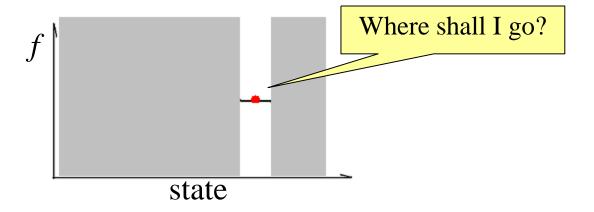


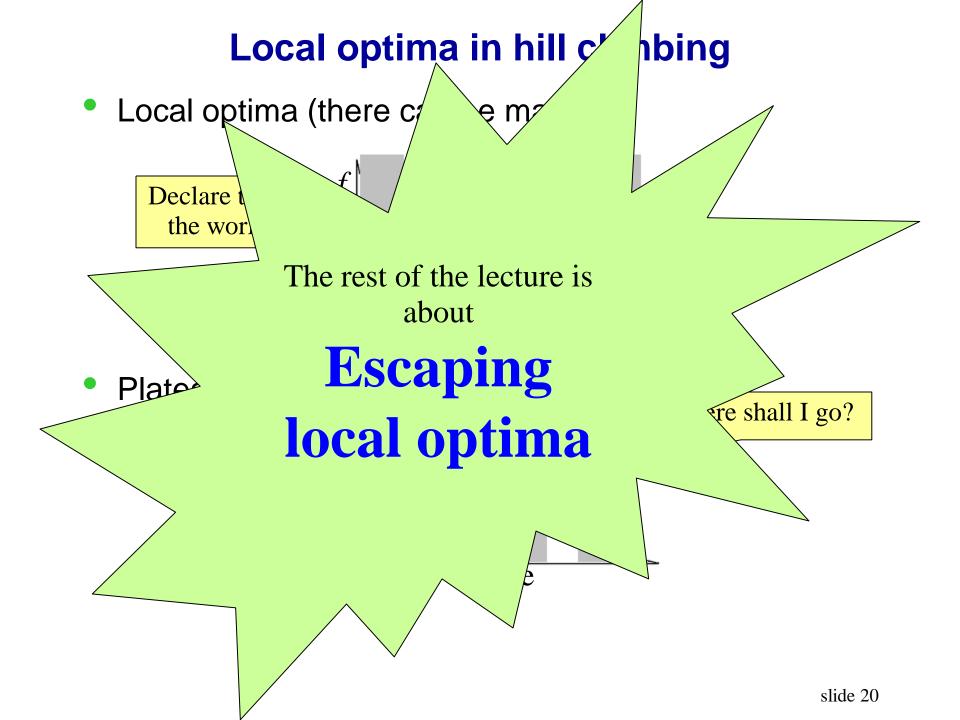
Local optima in hill climbing

Local optima (there can be many!)



Plateaux





Repeated hill climbing with random restarts

- Very simple modification
 - 1. When stuck, pick a random new start, run basic hill climbing from there.
 - 2. Repeat this *k* times.
 - 3. Return the best of the *k* local optima.
- Can be very effective
- Should be tried whenever hill climbing is used

Question: How do we make hill climbing less greedy?

- Question: How do we make hill climbing less greedy?
 - Stochastic hill climbing
 - Randomly select among better neighbors
 - The better, the more likely
 - Pros / cons compared with basic hill climbing?

- Question: How do we make hill climbing less greedy?
 - Stochastic hill climbing
 - Randomly select among better neighbors
 - The better, the more likely
 - Pros / cons compared with basic hill climbing?
- Question: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)

- Question: How do we make hill climbing less greedy?
 - Stochastic hill climbing
 - Randomly select among better neighbors
 - The better, the more likely
 - Pros / cons compared with basic hill climbing?
- Question: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)
 - First-choice hill climbing
 - Randomly generate neighbors, one at a time
 - If better, take the move
 - Pros / cons compared with basic hill climbing?

- We are still greedy! Only willing to move upwards.
- Important observation in life:

Sometimes one needs to temporarily step back in order to move forward.

Sometimes one needs to move to an inferior neighbor in order to escape a local optimum.

If each hill-climbing search has a probability p of success, then the expected number of restarts required is 1/p. For 8-queens instances with no sideways moves allowed, $p\approx 0.14$, so we need roughly 7 iterations to find a goal (6 failures and 1 success). The expected number of steps is the cost of one successful iteration plus (1-p)/p times the cost of failure, or roughly 22 steps in all. When we allow sideways moves, $1/0.94\approx 1.06$ iterations are needed on average and $(1\times 21)+(0.06/0.94)\times 64\approx 25$ steps. For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three million queens, the approach can find solutions in under a minute.²

2. SIMULATED ANNEALING

anneal

 To subject (glass or metal) to a process of heating and slow cooling in order to toughen and reduce brittleness.

- 1. Pick initial state s
- 2. Randomly pick *t* in neighbors(*s*)
- 3. IF f(t) better THEN accept $s \leftarrow t$.
- 4. ELSE /* t is worse than s */
- 5. accept $s \leftarrow t$ with a small probability
- 6. GOTO 2 until bored.

- 1. Pick initial state s
- 2. Randomly pick *t* in neighbors(*s*)
- 3. IF f(t) better THEN accept $s \leftarrow t$.
- 4. ELSE /* t is worse than s */
- 5. accept $s \leftarrow t$ with a small probability
- 6. GOTO 2 until bored.

How to choose the small probability?

idea 1:
$$p = 0.1$$

- 1. Pick initial state s
- 2. Randomly pick *t* in neighbors(*s*)
- 3. IF f(t) better THEN accept $s \leftarrow t$.
- 4. ELSE /* t is worse than s */
- 5. accept $s \leftarrow t$ with a small probability
- 6. GOTO 2 until bored.

How to choose the small probability?

idea 1: p = 0.1

idea 2: p decreases with time

- 1. Pick initial state s
- 2. Randomly pick *t* in neighbors(*s*)
- 3. IF f(t) better THEN accept $s \leftarrow t$.
- 4. ELSE /* t is worse than s */
- 5. accept $s \leftarrow t$ with a small probability
- 6. GOTO 2 until bored.

How to choose the small probability?

```
idea 1: p = 0.1
```

idea 2: p decreases with time

idea 3: p decreases with time, also as the 'badness'

|f(s)-f(t)| increases

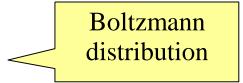
- If f(t) better than f(s), always accept t
- Otherwise, accept t with probability

$$\exp\left(-\frac{|f(s)-f(t)|}{Temp}\right)$$

Boltzmann distribution

- If f(t) better than f(s), always accept t
- Otherwise, accept t with probability

$$\exp\left(-\frac{|f(s)-f(t)|}{Temp}\right)$$



- Temp is a temperature parameter that 'cools' (anneals) over time, e.g. Temp← Temp*0.9 which gives Temp=(T₀)^{#iteration}
 - High temperature: almost always accept any t
 - Low temperature: first-choice hill climbing
- If the 'badness' (formally known as energy difference) |f(s)-f(t)| is large, the probability is small.

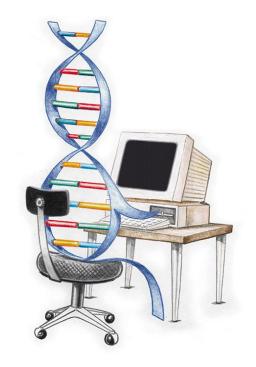
SA algorithm

```
// assuming we want to maximize f()
current = Initial-State(problem)
for t = 1 to \infty do
   T = Schedule(t); // T is the current temperature, which is
   monotonically decreasing with t
   if T=0 then return current; //halt when temperature = 0
   next = Select-Random-Successor-State(current)
   deltaE = f(next) - f(current); // If positive, next is better
   than current. Otherwise, next is worse than current.
   if deltaE > 0 then current = next; // always move to a
   better state
   else current = next with probability p = exp(deltaE /
   T); // as T \rightarrow 0, p \rightarrow 0; as deltaE \rightarrow -\infty, p \rightarrow0
end
```

Simulated Annealing issues

- Cooling scheme important
- Neighborhood design is the real ingenuity, not the decision to use simulated annealing.
- Not much to say theoretically
 - With infinitely slow cooling rate, finds global optimum with probability 1.
- Proposed by Metropolis in 1953 based on the analogy that alloys manage to find a near global minimum energy state, when annealed slowly.
- Easy to implement.
- Try hill-climbing with random restarts first!

GENETIC ALGORITHM



http://www.genetic-programming.org/slide 39

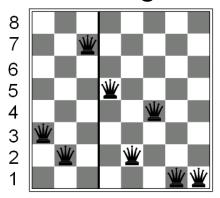
Evolution

- Survival of the fittest, a.k.a. natural selection
- Genes encoded as DNA (deoxyribonucleic acid), sequence of bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)
- The chromosomes from the parents exchange randomly by a process called crossover. Therefore, the offspring exhibit some traits of the father and some traits of the mother.
 - Requires genetic diversity among the parents to ensure sufficiently varied offspring
- A rarer process called mutation also changes the genes (e.g. from cosmic ray).
 - Nonsensical/deadly mutated organisms die.
 - Beneficial mutations produce "stronger" organisms
 - Neither: organisms aren't improved.

Natural selection

- Individuals compete for resources
- Individuals with better genes have a larger chance to produce offspring, and vice versa
- After many generations, the population consists of lots of genes from the superior individuals, and less from the inferior individuals
- Superiority defined by fitness to the environment
- Popularized by Darwin
- Mistake of Lamarck: environment does not force an individual to change its genes

- Yet another AI algorithm based on real-world analogy
- Yet another heuristic stochastic search algorithm
- Each state s is called an individual. Often (carefully) coded up as a string.



(32752411)

- The score f(s) is called the fitness of s. Our goal is to find the global optimum (fittest) state.
- At any time we keep a fixed number of states. They are called the population. Similar to beam search.

Individual encoding

- The "DNA"
- Satisfiability problem(A B C D E) = (T F T T T)
- TSPA-E-D-C-B-F-G-H-A

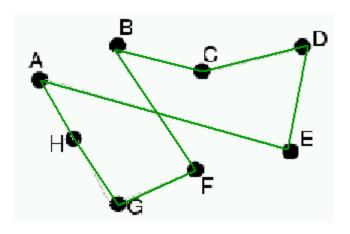
$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$



 Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.

24748552

32752411

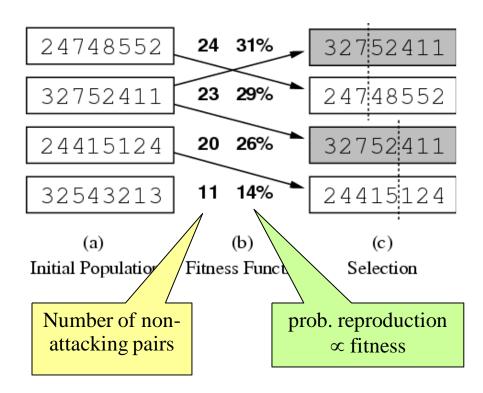
24415124

32543213

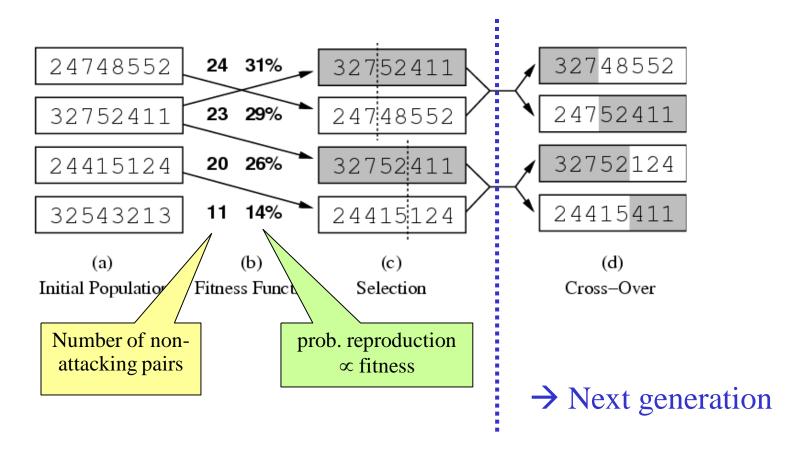
(a)

Initial Population

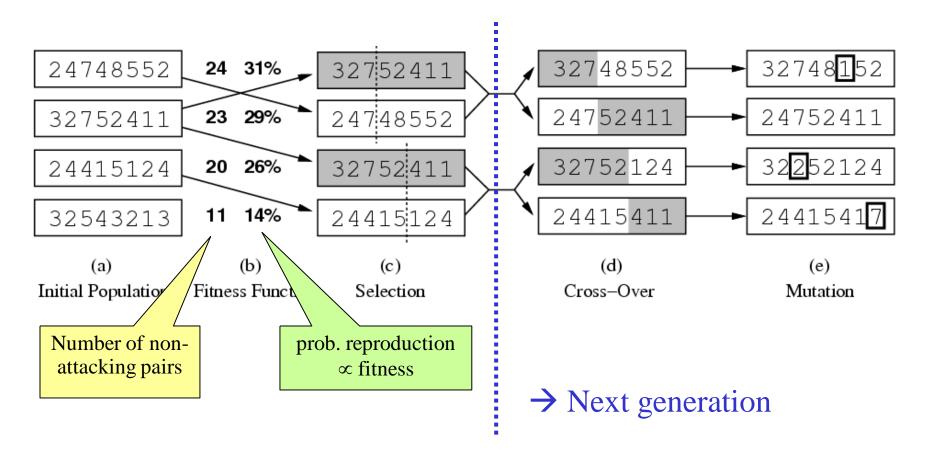
 Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.



 Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.



 Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.



Genetic algorithm (one variety)

- 1. Let s_1, \ldots, s_N be the current population
- 2. Let $p_i = f(s_i) / \Sigma_j f(s_j)$ be the reproduction probability
- 3. FOR k = 1; k < N; k + = 2
 - parent1 = randomly pick according to p
 - parent2 = randomly pick another
 - randomly select a crossover point, swap strings of parents 1, 2 to generate children t[k], t[k+1]
- **4.** FOR k = 1; k <= N; k ++
 - Randomly mutate each position in t[k] with a small probability (mutation rate)
- 5. The new generation replaces the old: $\{s\} \leftarrow \{t\}$. Repeat.

Proportional selection

- $p_i = f(s_i) / \Sigma_i f(s_i)$
- $\Sigma_j f(s_j) = 5+20+11+8+6=50$
- $p_1 = 5/50 = 10\%$

Individual	Fitness	Prob.
Α	5	10%
В	20	40%
С	11	22%
D	8	16%
E	6	12%

Variations of genetic algorithm

- Parents may survive into the next generation
- Use ranking instead of f(s) in computing the reproduction probabilities.
- Cross over random bits instead of chunks.
- Optimize over sentences from a programming language. Genetic programming.

• . . .

Genetic algorithm issues

- State encoding is the real ingenuity, not the decision to use genetic algorithm.
- Lack of diversity can lead to premature convergence and non-optimal solution
- Not much to say theoretically
 - Cross over (sexual reproduction) much more efficient than mutation (asexual reproduction).
- Easy to implement.
- Try hill-climbing with random restarts first!