The Problem of Modeling Sequential Data

Time series generated by a dynamic system

A sequence generated by a spatial process

The Solutions

Classic Approaches
o Linear Models : Regression
o NonLinear Models: Neural Networks, Decision Trees

Problems with Classic Approaches
o Data dependency is not incorporated in the
prediction of the future

State Space Model
0 A state space is a description of a configuration of discrete states
used as a simple model of machines. Formally, it can be defined as a
tuple [N, A, S, G] where:
= N is a set of states
= As a set of arcs connecting the states
= Sis a nonempty subset of N that contains start states
= G is a nonempty subset of N that contains the goal states.



Markov Process

Markov Models

* Set of states: 151>525-++> Sy |

* Process moves from one state to another generating a
sequence of states :  S;,5,,-++,5;,---

» Markov chain property: probability of each subsequent state

depends only on what was the previous state:

P(Sff ‘ S15525+ - vSfr—l) = P(SI; ‘ S}(—l)

* To define Markov model, the following probabilities have to be
specified: transition probabilities @, = P(s, |s ;) and 1initial
probabilities 77, = P(s,)



Example of Markov Model

v\)

Ram

» Two states : ‘Rain’ and ‘Dry’.

* Transition probabilities: P(‘Rain’\‘Rain’)ZOﬁ ,
P(‘Dry’|‘Rain’)=0.7 , P(‘Rain’|‘Dry*)=0.2, P(‘Dry’|'Dry’)=0.8
* Initial probabilities: say P(‘Rain’):O.ﬂr , P(‘Dry’):0.6 :

Calculation of Sequence

» By Markov chain property, probability of state sequence can be
found by the formula:

P(s;,8y,..058,)=P(s, | S,85,--,8_ )P(S,,85,-..,8: 1)
= P(s; |8, )P(8),85,...,8, ) =-..
= P(sy | 5¢) PS5y | 852)- - P(sy [ 5)P(s,)

 Suppose we want to calculate a probability of a sequence of
states in our example, {‘Dry’.,’Dry’,’Rain’,Rain’}.

P({*Dry’.’Dry’.’Rain’,Rain’} ) —
P(

['Dry’) P(‘Dry)=

=(0.3*%0.2%0.8*0.6



Hidden Markov Models

+ Set of states: {Sp Soseees SN}

*Process moves from one state to another generating a
sequence of states :  §;,85,...,8,,...

» Markov chain property: probability of each subsequent state

depends only on what was the previous state:

P(s, |8,8,,..,8,_)=P(s, | 5,)

« States are not visible, but each state randomly generates one of M
observations (or visible states) {V;,V,,...,Vy/}

* To detine hidden Markov model, the following probabilities
have to be specified: matrix of transition probabilities A=(aij)_,

A= P(Si| Sj) , matrix of observation probabilities B:(Ibi (Vm)),
bl-(Vm) = P(Vm| Si) and a vector of initial probabilities TC=(TCi)_,
W = P(Si) . Model is represented by MZ(A, B, TC).

HIDDEN MARKQOV ] [l [

PROCESS b,(1) by(2) b,3) .. .
b{l} b3(2 b{3}

by(1) by(2) by(3)




Word Recognition

» Typed word recognition, assume all characters are separated.

Anberst

 Character recognizer outputs probability of the image being
particular character, P(image|character).

Hidden state Observation

» Hidden states of HMM = characters.

« Observations = typed images of characters segmented from the
image V, . Note that there 1s an infinite number of
observations

 Observation probabilities = character recognizer scores.

B=(b,(v,))=(P(v,|s,))

*Transition probabilities will be defined differently in two
subsequent models.



« If lexicon is given, we can construct separate HMM models
for each lexicon word.

,_ _ r N N N N
Ambherst m —»\11 /'_H\M_ )= i — .E_/'—H'\ E_/,I
Buffalo /u \:H/ f }—-{/ f \Zn—v:,/ a\:—u:/l j:—n/ 0>
N N/ NS N N N
0.4 0.6
o

* Here recognition of word image 1s equivalent to the problem
of evaluating few HMM models.
*This 1s an application of Evaluation problem.

* We can construct a single HMM for all words.

 Hidden states = all characters in the alphabet.

* Transition probabilities and 1nitial probabilities are calculated
from language model.

« Observations and observation probabilities are as before.

b)

» Here we have to determine the best sequence of hidden states,
the one that most likely produced word image.
* This 1s an application of Decoding problem.



Example of HMM

Observed states

Y ~ (“symbols™)
v cloudy

______ :;—-- 6?{;!‘??1‘
0.1 -

5 .y cloudy

b sunny
0.8 oY s

Calculation of Observation Sequence Probability

*Suppose we want to calculate a probability of a sequence of
observations 1 our example, {‘Dry’,’Rain’}.
*Consider all possible hidden state sequences:

P({‘Dry’,’Rain’} ) = P(-{‘Dry’,’Rain’} ) -{‘Lo*\&-”,’LO\&-”}) +
P({‘Dry’,’Rain’} , {*Low’,’High’}) + P({*Dry’,’Rain’} .
{‘High’,’Low’}) + P({*Dry’.’Rain’} , {‘High’,"High’})

where first term 1s :

P({‘Dry’,’Rain’} : -{‘LO\R-”,’LO\.-\-”}):

P({‘Dry’,’Rain’} | -{‘LO\R-”,’LO\&-”}) P(-{‘LO\&-”,’LO\&-”}) =
P(‘Dry’’Low’)P(‘Rain’|"Low’) P(‘Low”)P(*Low’|"'Low)



Main Issues with HMM

Evaluation problem. Given the HMM M:(A, B, TC) and the
observation sequence 0=0, 0, ... 0. calculate the probability that
model M has generated sequence O .

* Decoding problem. Given the HMM MZ(A, B, TC) and the
observation sequence 0=0, 0,... O. calculate the most likely

sequence of hidden states S; that produced this observation sequence

O.

* Learning problem. Given some training observation sequences
O=01 0; ... Ox and general structure of HMM (numbers of hidden

and visible states), determine HMM parameters MZ(A, B, TC)
that best fit training data.

(0 =0,...0xdenotes a sequence of observations Oy E{V}, ..., V).

Evaluation Problem

*Evaluation problem. Given the HMM MZ(A_, B, TC) and the
observation sequence (J=0, 0,... O, calculate the probability that
model M has generated sequence O .

» Trying to find probability of observations O=0, 0, ... Og by
means of considering all hidden state sequences (as was done in
example) 1s impractical:

NK hidden state sequences - exponential complexity.

* Use Forward-Backward HMM algorithms for efficient
calculations.

* Define the forward variable Ol (1) as the joint probability of the
partial observation sequence 0 O, ... O and that the hidden state at

time kis S; : O ()= P(0,0,... O qi=S5;)
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Forward Recursion for HMM

Ok = Observations
—
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o,()=P(0, .qi=si) = bi(0,) , 1<=i<=N.

* Forward recursion:

O ()= P(0,0;... Opy Qi=8)) =
2, P(0,0;... 0Ok qi=Si Qei=8;) =
>, P(0,0;... 0p qi=5i) a;; bj (0x1 ) =
[2; o) @i | b;(01)

* Termination:

1<=j<=N, 1<=k<=K-1.

P(0,0,... 0x) =2, P(0,0,... 0k Qx=S5;) = Z; O (i)

» Complexity :

NZ2K operations.



Example

I Sunny Cloudy Sunny
(begin) | 1 0 0 0
(0.05)(0.7) (0.1755)(0.7)
0.9 + 0.1 +
(0.4)(0.4) (0.051)(0.4)
Low [0 ] (0.1)(0.5=0.05]= 0.9(0.035. +0.16) | =0.1(0.12285 + 0.0204)
=0.1755 =0.014325
(0.05)(0.3) (0.1755)(0.3)
0.2 + 0.8 +
(0.4)(0.6) (0.051)(0.6)
High [0 | (0.8)(0.5)=0.4 | =0.2(0.015+ 0.24) = 0.8(0.05265 +0.0306)
=0.051 =0.0666

P(x)=P(sunny, cloudy, sunny) = 0.014325(1) + 0.0666(1) = 0.080925

Forward Recursion for HMM

* Define the forward variable Bk(i) as the joint probability of the

partial observation sequence O,y Opss --

. Og given that the hidden

state at time kK 18 S; : Bk(i)z P(Ok,l O:n... O |qk= Si)

* Initialization:

Pr)=1 , 1<=i<=N.
* Backward recursion:

B.(G)=P(0r; Opr ... O] q=S;) =
Zi P04+ Oz ... Ok Qe+1=S; | Q= Sj) =
2, P(042 045 ... O] (Qe1=Si) & b, (04 ) =

2, Pra@ a5 b (0

* Termination:

1<=j<=N, 1<=k<=K-1.

P(0,0,... 0x) =2, P(0,0,... 0x q;=5) =
2, P(0,0,... ox |q=55) P(qi=s)) = Z, B,() b; (0,) T;




Example

b Sunny Cloudy | Sunny
(begin) 0
0.7(0.9)(0.31) | 0.7(0.1)(L)
0.5(0.1)(0.2265) + + _
Low _ _ 1
=0.011325 0.3(0.2)(0.52) | 0.3(0.8)(1)
= 0.2265 =0.31
0.4(0.9)(0.31) | 0.4(0.1)(D)
_ 0.5(0.8)(0.174) + + _
High o _ - : . 1
= 0.0696 0.6(0.2)(0.52) | 0.6(0.8)(1)
= 0.174 =0.52
> -0.080925 ¢/

Decoding Problem

*Decoding problem. Given the HMM M=(A, B, 7) and the
observation sequence (0=0,0,... Ok, calculate the most likely
sequence of hidden states S; that produced this observation sequence.
» We want to find the state sequence Q_= ;- - -x which maximizes

P(Q | 0,0,... OK) , or equivalently P(Q , 0,0;... OK) i
* Brute force consideration of all paths takes exponential time. Use
efficient Viterbi algorithm instead.

* Define variable 8k(i) as the maximum probability of producing
observation sequence 0, O, ... O when moving along any hidden
state sequence ;. .. (. and getting into ;= S; .

O, (i) =max P(q;... Q1> @=Si» 01 0;... O)

where max is taken over all possible paths (];... (k.-



Viterbi Algorithm
» General 1dea:
if best path ending in ;= S; goes through (i.,= S; then it

should coincide with best path ending in (.,= S;.

\Si)
/\/S]; ﬂNJ'
« O, (i)=max P(q;... Q1> Q= Sj, 0,0,... Oy) =

max; [ a; bj (Ok) max P(ql. o 1= S5;,0,0,... Ok_l) ]

* To backtrack best path keep info that predecessor of S; was S,

* Initialization:
61(i) = max P(qlz S, 01) =TT, bl- (01) , 1<=1<=N.
*Forward recursion:
O, () =max P(q,... Q1> @=S;, 010,... 0y) =
max; [ a; bj (Ok) max P(ql. o k1= 8, 0,0, Ok_l) ] =
max, [ a; b;(0) O, ()],  1<=j<=N, 2<=k<=K.

*Termination: choose best path ending at time K
max, [ 8K(i) ]
» Backtrack best path.

This algorithm is similar to the forward recursion of evaluation

problem, with 2 replaced by max and additional backtracking.



Example

v Sunny Cloudy Sunny
(begin) 0 0 0
0.05)(0.7 0.144)(0.7
0.9111ax[( )0-7) O.lmax]( )0.7)
l (0.4)(0.4) 0.048)(0.4)
]’0.035 _ ]’0. 1008
Low 1)(0.5)=0.05 = 0.9Mmax _ 0.lmax _
| 0.16 |0.0192
79)(0.16) =0.14 A _1)(0.1008) =0.01008
(0.05)(0.3 0.144)(0.3
2 1axJ( X _) 0.81113}1[( X _)
(0.4)(0.6) | (0.048)(0.6)
_ [0.015 [0.0432
High (0.8)(0.5)=04-T =0.2max =0.8max
: | 0.24 |0.0288

=(0.2)(0.24) = 0.048

= (0.8)(0.0432) = 0.03456

Learning Problem

*Learning problem. Given some training observation sequences

(0=0, 0, ... Ox and general structure of HMM (numbers of
hidden and visible states), determine HMM parameters MZ(A,

B, ’J'C) that best fit training data, that is maximizes P(O \M) :

* There 1s no algorithm producing optimal parameter values.

« Use iterative expectation-maximization algorithm to find local
maximum of P(O |M) - Baum-Welch algorithm.




m Training HMM to encode obs seq such that HMM
should identify a similar obs seq in future

m Find A=(A,B,1T), maximising P(O|A)

m General algorithm:
Initialise: A,
Compute new model A, using Ay and observed
sequence O

Then A, < 4
Repeat steps 2 and 3 until:

log P(O| A)=1logP(O| 4,) <d

Step 1 of Baum-Welch algorithm:

m Let (i j) be a probability of being in state / at time
t and at state j attime {+7, given A and O seq

O:r (?')ay'bj (Or+1 )ﬁrﬂ (})
PO 1)

E(i, J)=

O"f (i)ay'bj (Os‘+l )ﬂrﬂ (])
Z Z af (f)aﬂbj (Or+1 ))Brﬂ (])

i=1 j=1
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Operations required for the computation
of the joint event that the system is in state
Siand time t and State Sj at time t+1

m Lety (7)be a probability of being in state i at
time ¢, given O

7= 56

T-1

m > 7() -expected no. of transitions from state i

—

—1 . .
B > £() - expected no. of transitions 7 — ]

f

F-q

Il
—



Step 2 of Baum-Welch algorithm:

m 7 =7,(7) the expected frequency of state j at time t=1

4 = Z‘br(fﬁj)

/ (i
Z;’}(f) ratio of expected no. of transitions from

|
state / to j over expected no. of transitions from state /
. 27D
bj(]':) - : {, .
n 2.7:()) ratio of expected no. of times in state j

observing symbol k over expected no. of times in state j



