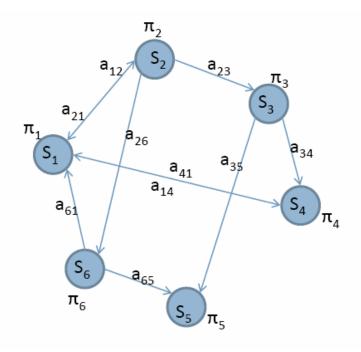
The Problem of Modeling Sequential Data

- Time series generated by a dynamic system
- A sequence generated by a spatial process

The Solutions

- Classic Approaches
 - o Linear Models: Regression
 - NonLinear Models: Neural Networks, Decision Trees
- Problems with Classic Approaches
 - Data dependency is not incorporated in the prediction of the future
- State Space Model
 - A **state space** is a description of a configuration of discrete states used as a simple model of machines. Formally, it can be defined as a tuple [N, A, S, G] where:
 - N is a set of states
 - A is a set of arcs connecting the states
 - S is a nonempty subset of N that contains start states
 - G is a nonempty subset of N that contains the goal states.

Markov Process



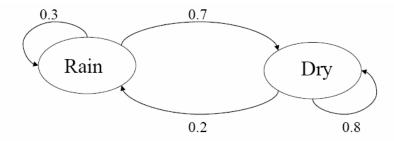
Markov Models

- Set of states: $\{S_1, S_2, \dots, S_N\}$
- Process moves from one state to another generating a sequence of states : $S_1, S_2, ..., S_k, ...$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_k \mid s_1, s_2, \dots, s_{k-1}) = P(s_k \mid s_{k-1})$$

• To define Markov model, the following probabilities have to be specified: transition probabilities $a_{ij} = P(s_i \mid s_j)$ and initial probabilities $\pi_i = P(s_i)$

Example of Markov Model



- Two states: 'Rain' and 'Dry'.
- Transition probabilities: P('Rain'|'Rain')=0.3,

$$P('Dry'|'Rain')=0.7$$
, $P('Rain'|'Dry')=0.2$, $P('Dry'|'Dry')=0.8$

• Initial probabilities: say P(`Rain')=0.4, P(`Dry')=0.6.

Calculation of Sequence

• By Markov chain property, probability of state sequence can be found by the formula:

$$P(s_1, s_2, ..., s_k) = P(s_k \mid s_1, s_2, ..., s_{k-1}) P(s_1, s_2, ..., s_{k-1})$$

$$= P(s_k \mid s_{k-1}) P(s_1, s_2, ..., s_{k-1}) = ...$$

$$= P(s_k \mid s_{k-1}) P(s_{k-1} \mid s_{k-2}) ... P(s_2 \mid s_1) P(s_1)$$

• Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

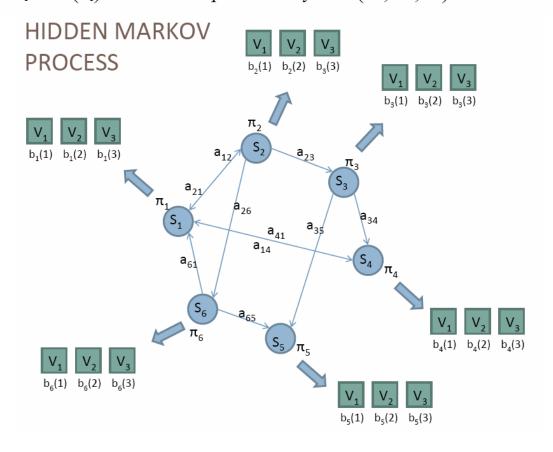
$$P(\{\text{'Dry','Dry','Rain',Rain'}\}) = P(\text{'Rain'}|\text{'Rain'}) P(\text{'Rain'}|\text{'Dry'}) P(\text{'Dry'}|\text{'Dry'}) P(\text{'Dry'}) = 0.3*0.2*0.8*0.6$$

Hidden Markov Models

- Set of states: $\{s_1, s_2, ..., s_N\}$
- •Process moves from one state to another generating a sequence of states : $S_1, S_2, ..., S_k, ...$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_k \mid s_1, s_2, ..., s_{k-1}) = P(s_k \mid s_{k-1})$$

- States are not visible, but each state randomly generates one of M observations (or visible states) $\{v_1, v_2, ..., v_M\}$
- To define hidden Markov model, the following probabilities have to be specified: matrix of transition probabilities $A=(a_{ij})$, $a_{ij}=P(s_i\mid s_j)$, matrix of observation probabilities $B=(b_i(v_m))$, $b_i(v_m)=P(v_m\mid s_i)$ and a vector of initial probabilities $\pi=(\pi_i)$, $\pi_i=P(s_i)$. Model is represented by $M=(A,B,\pi)$.

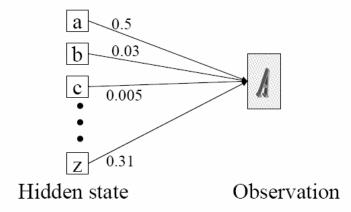


Word Recognition

• Typed word recognition, assume all characters are separated.

Amherst

• Character recognizer outputs probability of the image being particular character, P(image|character).

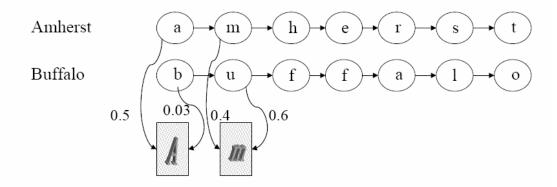


- Hidden states of HMM = characters.
- Observations = typed images of characters segmented from the image v_{α} . Note that there is an infinite number of observations
- Observation probabilities = character recognizer scores.

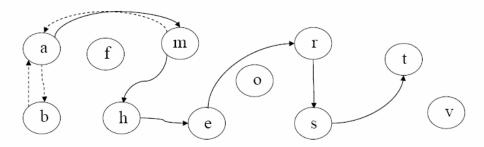
$$B = (b_i(v_\alpha)) = (P(v_\alpha \mid s_i))$$

•Transition probabilities will be defined differently in two subsequent models.

• If lexicon is given, we can construct separate HMM models for each lexicon word.

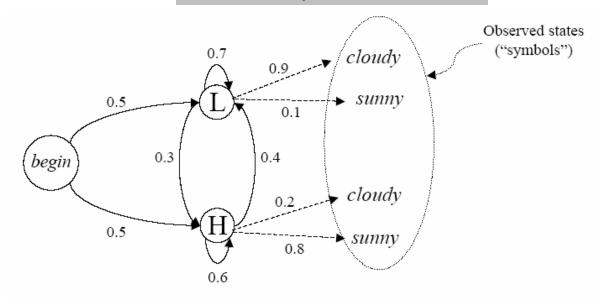


- Here recognition of word image is equivalent to the problem of evaluating few HMM models.
- •This is an application of Evaluation problem.
- We can construct a single HMM for all words.
- Hidden states = all characters in the alphabet.
- Transition probabilities and initial probabilities are calculated from language model.
- Observations and observation probabilities are as before.



- Here we have to determine the best sequence of hidden states, the one that most likely produced word image.
- This is an application of **Decoding problem.**

Example of HMM



Calculation of Observation Sequence Probability

- •Suppose we want to calculate a probability of a sequence of observations in our example, {'Dry','Rain'}.
- •Consider all possible hidden state sequences:

$$\begin{split} &P(\{\text{`Dry','Rain'}\}\) = P(\{\text{`Dry','Rain'}\}\ , \{\text{`Low','Low'}\}) + \\ &P(\{\text{`Dry','Rain'}\}\ , \{\text{`Low','High'}\}) + P(\{\text{`Dry','Rain'}\}\ , \\ &\{\text{`High','Low'}\}) + P(\{\text{`Dry','Rain'}\}\ , \{\text{`High','High'}\}) \end{split}$$

where first term is:

$$\begin{split} &P(\{\text{`Dry','Rain'}\}, \{\text{`Low','Low'}\}) = \\ &P(\{\text{`Dry','Rain'}\} \mid \{\text{`Low','Low'}\}) \ P(\{\text{`Low','Low'}\}) = \\ &P(\text{`Dry'}|\text{`Low'})P(\text{`Rain'}|\text{`Low'}) \ P(\text{`Low'})P(\text{`Low'}|\text{`Low}) \end{split}$$

Main Issues with HMM

Evaluation problem. Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \dots o_K$, calculate the probability that model M has generated sequence O.

- **Decoding problem.** Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the most likely sequence of hidden states S_i that produced this observation sequence O.
- Learning problem. Given some training observation sequences $O=o_1\,o_2\dots\,o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A,\,B,\,\pi)$ that best fit training data.

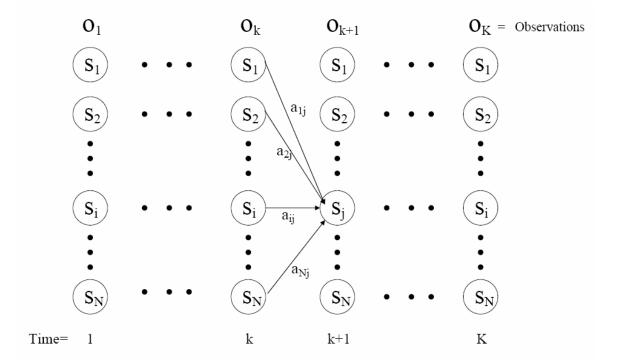
 $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{v_1,...,v_M\}$.

Evaluation Problem

- •Evaluation problem. Given the HMM M=(A, B, π) and the observation sequence O= $o_1 o_2 \dots o_K$, calculate the probability that model M has generated sequence O.
- Trying to find probability of observations $O=o_1 o_2 ... o_K$ by means of considering all hidden state sequences (as was done in example) is impractical:

N^K hidden state sequences - exponential complexity.

- Use Forward-Backward HMM algorithms for efficient calculations.
- Define the forward variable $\alpha_k(i)$ as the joint probability of the partial observation sequence $o_1 o_2 \dots o_k$ and that the hidden state at time k is $s_i : \alpha_k(i) = P(o_1 o_2 \dots o_k, q_k = s_i)$



Forward Recursion for HMM

• Initialization:

$$\alpha_1(i) = P(o_1, q_1 = s_i) = \pi_i b_i(o_1), 1 \le i \le N.$$

• Forward recursion:

$$\begin{split} &\alpha_{k+1}(i) = P(o_1 \, o_2 \, ... \, o_{k+1}, q_{k+1} \! = \! s_j) = \\ & \quad \Sigma_i \; P(o_1 \, o_2 \, ... \, o_{k+1}, q_k \! = \! s_i, q_{k+1} \! = \! s_j) = \\ & \quad \Sigma_i \; P(o_1 \, o_2 \, ... \, o_k, q_k \! = \! s_i) \; a_{ij} \; b_j(o_{k+1}) = \\ & \quad \left[\Sigma_i \; \alpha_k(i) \; a_{ij} \; \right] \; b_i(o_{k+1}) \; , \qquad 1 \! < \! = \! j \! < \! = \! N, \; 1 \! < \! = \! k \! < \! = \! K \! - \! 1. \end{split}$$

• <u>Termination:</u>

$$P(o_1 o_2 ... o_K) = \sum_i P(o_1 o_2 ... o_{K_i} q_K = s_i) = \sum_i \alpha_K(i)$$

• Complexity :

N²K operations.

Example

f		Sunny	Cloudy		Sunny		
(begin)	1	0	0			0	
				(0.05)(0.7)			(0.1755)(0.7)
			0.9	+		0.1	+
				(0.4)(0.4)			(0.051)(0.4)
Low	0	(0.1)(0.5) = 0.05	= 0.9(0.035 + 0.16)		5)	= 0.1(0.12285 + 0.0204)	
			= 0.1755			= 0.014325	
				(0.05)(0.3)			(0.1755)(0.3)
			0.2	+		0.8	+
				(0.4)(0.6)			(0.051)(0.6)
High	0	(0.8)(0.5) = 0.4	=0.2(0.015+0.24)		1)	= 0.8(0.05265 + 0.0306)	
			= 0.051		= 0.0666		

P(x)=P(sunny, cloudy, sunny) = 0.014325(1) + 0.0666(1) = 0.080925

Forward Recursion for HMM

- Define the forward variable $\beta_k(i)$ as the joint probability of the partial observation sequence $O_{k+1} O_{k+2} \dots O_K$ given that the hidden state at time k is $S_i: \beta_k(i) = P(O_{k+1} O_{k+2} \dots O_K | q_k = S_i)$
- Initialization:

$$\beta_{K}(i)=1$$
, 1<=i<=N.

• Backward recursion:

$$\begin{split} \beta_k(j) &= P\big(o_{k+1} \, o_{k+2} \, ... \, o_K \, \big| \, q_k = s_j \big) = \\ &\quad \Sigma_i \, P\big(o_{k+1} \, o_{k+2} \, ... \, o_{K_i} \, q_{k+1} = s_i \, \big| \, q_k = s_j \big) = \\ &\quad \Sigma_i \, P\big(o_{k+2} \, o_{k+3} \, ... \, o_K \, \big| \, q_{k+1} = s_i \big) \, a_{ji} \, b_i \, \big(o_{k+1} \big) = \\ &\quad \Sigma_i \, \beta_{k+1}(i) \, a_{ii} \, b_i \, \big(o_{k+1} \big) \, , \qquad 1 <= j <= N, \, 1 <= k <= K-1. \end{split}$$

• Termination:

$$\begin{split} P(o_1 \, o_2 \, ... \, o_K) &= \sum_i P(o_1 \, o_2 \, ... \, o_{K_i} \, q_i = s_i) = \\ &\sum_i P(o_1 \, o_2 \, ... \, o_K \, | q_i = s_i) \, P(q_i = s_i) = \sum_i \beta_i(i) \, b_i(o_1) \, \pi_i \end{split}$$

Example

b		Sunny	Cloudy	Sunny	
(begin)				0	
Low		0.7(0.9)(0.31)	0.7(0.1)(1)		
	0.5(0.1)(0.2265)	+	+	1	
	= 0.011325	0.3(0.2)(0.52)	0.3(0.8)(1)		
		= 0.2265	=0.31		
		0.4(0.9)(0.31)	0.4(0.1)(1)		
High	0.5(0.8)(0.174)	+	+	1	
	= 0.0696	0.6(0.2)(0.52)	0.6(0.8)(1)	1	
		= 0.174	= 0.52		

$$\sum = 0.080925$$

Decoding Problem

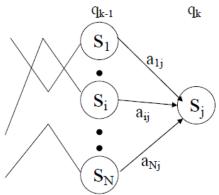
- •Decoding problem. Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the most likely sequence of hidden states S_i that produced this observation sequence.
- We want to find the state sequence $Q = q_1 \dots q_K$ which maximizes $P(Q \mid o_1 o_2 \dots o_K)$, or equivalently $P(Q, o_1 o_2 \dots o_K)$.
- Brute force consideration of all paths takes exponential time. Use efficient **Viterbi algorithm** instead.
- Define variable $\delta_k(i)$ as the maximum probability of producing observation sequence $O_1\,O_2\dots\,O_k$ when moving along any hidden state sequence $q_1\dots\,q_{k\text{--}1}$ and getting into $q_k=s_i$.

$$\begin{split} & \delta_k(i) = \text{max } P(q_1 \dots \ q_{k\text{-}1} \,,\, q_k = s_i \;,\, o_1 \, o_2 \dots \, o_k) \\ & \text{where max is taken over all possible paths } q_1 \dots \, q_{k\text{-}1} \,. \end{split}$$

Viterbi Algorithm

· General idea:

if best path ending in $q_k = S_j$ goes through $q_{k-1} = S_i$ then it should coincide with best path ending in $q_{k-1} = S_i$.



- $\delta_k(i) = \max P(q_1 ... q_{k-1}, q_k = s_j, o_1 o_2 ... o_k) = \max_i [a_{ij} b_i(o_k) \max P(q_1 ... q_{k-1} = s_i, o_1 o_2 ... o_{k-1})]$
- To backtrack best path keep info that predecessor of S_i was S_i .
- Initialization:

$$\delta_1(i) = \max P(q_1 = s_i, o_1) = \pi_i b_i(o_1), 1 \le i \le N.$$

•Forward recursion:

$$\begin{split} & \delta_k(j) = \max \, P(q_1 \ldots \, q_{k\text{-}1} \,, \, q_k \text{=} \, s_j \,\,, \, o_1 \, o_2 \ldots \, o_k) \, = \\ & \max_i \, [\,\, a_{ij} \,\, b_j \, (o_k \,) \, \max \, P(q_1 \ldots \, q_{k\text{-}1} \text{=} \, s_i \,\,, \, o_1 \, o_2 \ldots \, o_{k\text{-}1}) \,\,] \, = \\ & \max_i \, [\,\, a_{ij} \,\, b_j \, (o_k \,) \,\, \delta_{k\text{-}1}(i) \,\,] \,\,, \qquad 1 \text{<=}j \text{<=}N, \, 2 \text{<=}k \text{<=}K. \end{split}$$

•<u>Termination:</u> choose best path ending at time K

$$\text{max}_{i} \, [\, \delta_{\text{K}}(i) \,]$$

• Backtrack best path.

This algorithm is similar to the forward recursion of evaluation problem, with Σ replaced by max and additional backtracking.

Example

v		Sunny	Cloudy	Sunny	
(begin)	1	0	0	0	
			$0.9 \max \begin{cases} (0.05)(0.7) \\ (0.4)(0.4) \end{cases}$	$0.1 \max \begin{cases} (0.144)(0.7) \\ (0.048)(0.4) \end{cases}$	
Low	0	(0.1)(0.5) = 0.05	$= 0.9 \max \begin{cases} 0.035 \\ 0.16 \end{cases}$	0.1max \	
		 		= (0.1)(0.1008) = 0.01008	
		1	$0.2 \max \begin{cases} (0.05)(0.3) \\ (0.4)(0.6) \end{cases}$	$0.8 \max \begin{cases} (0.144)(0.3) \\ (0.048)(0.6) \end{cases}$	
High	0	(0.8)(0.5) = 0.4	$= 0.2 \max \begin{cases} 0.015 \\ 0.24 \end{cases}$	$= 0.8 \max \begin{cases} 0.0432 \\ 0.0288 \end{cases}$	
			=(0.2)(0.24)=0.048	= (0.8)(0.0432) = 0.03456	

Learning Problem

- •Learning problem. Given some training observation sequences $O=o_1\,o_2\dots\,o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A,B,\pi)$ that best fit training data, that is maximizes $P(O\mid M)$.
- There is no algorithm producing optimal parameter values.
- Use iterative expectation-maximization algorithm to find local maximum of $P(O\mid M)$ Baum-Welch algorithm.

- Training HMM to encode obs seq such that HMM should identify a similar obs seq in future
- Find $\lambda = (A, B, \pi)$, maximising $P(O|\lambda)$
- General algorithm:
 - □ Initialise: λ₀
 - $\hfill\Box$ Compute new model $\lambda,$ using λ_0 and observed sequence O
 - □ Then $\lambda_o \leftarrow \lambda$
 - □ Repeat steps 2 and 3 until:

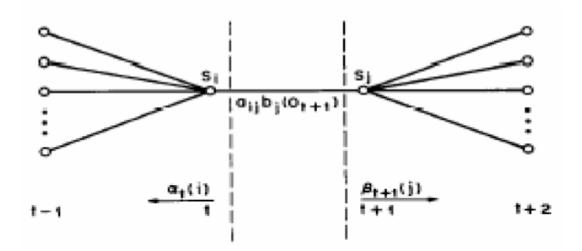
$$\log P(O \mid \lambda) - \log P(O \mid \lambda_0) < d$$

Step 1 of Baum-Welch algorithm:

Let ξ(i,j) be a probability of being in state i at time t and at state j at time t+1, given λ and O seq

$$\xi(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{P(O \mid \lambda)}$$

$$= \frac{\alpha_{t}(i)a_{ij}b_{j}(o_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_{t}(i)a_{ij}b_{j}(o_{t+1})\beta_{t+1}(j)}$$



Operations required for the computation of the joint event that the system is in state Si and time t and State Sj at time t+1

■ Let $\gamma_t(i)$ be a probability of being in state i at time t, given O

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j)$$

- $lacksquare \sum_{t=1}^{T-1} \xi_t(i)$ expected no. of transitions i o j

Step 2 of Baum-Welch algorithm:

- $\hat{\pi} = \gamma_1(i)$ the expected frequency of state *i* at time *t*=1
 - $\hat{a}_{ij} = \frac{\sum \xi_t(i,j)}{\sum \gamma_t(i)}$ ratio of expected no. of transitions from state *i* to *j* over expected no. of transitions from state *i*

 $\hat{b}_{j}(k) = \frac{\sum_{t,o_{t}=k} \gamma_{t}(j)}{\sum \gamma_{t}(j)}$ ratio of expected no. of times in state j observing symbol k over expected no. of times in state j