Multiiayer neurali networks

n A multilayer perceptroniis a feedforward neural
network with ene or more hidden layers.

= [he network consists of an Inpuit layer of source
neurens, at least one middle or hidden layer of
computational neurons, and an output layer of
computational neurens.

= [he Input signals are propagated in a forward
direction on a layer-by-layer basis.

[1 Negnevitsky, Pearson Education, 2002

Multiiayer perceptron with tworhidden Iayers

N\

Output Signals

y
Q/
/

%

X
%
4 :")
0‘0

L)

(7))
qe]
c
(@)
(0p)
—
>
o
-

<
[
‘\:;4

)

|

:

|

First Second
hidden hidden

layer layer

[1 Negnevitsky, Pearson Education, 2002

What deesithe middle layer hide?

s A hidden layer “hides™ Its desiredi output.
Neurons In the hidden layer cannot be observed
through the Input/output behaviour of the network.
There Is no obvious way to know: what the desired
output of the hidden layer should be.

s Commercial ANNS incorporate three and
sometimes four layers, including one or two
hidden layers. Eachilayer can contain from 10 to
1000 neurons. Experimental neural networks may
have five or even six layers, including three or
four hidden layers, and utilise millions of neurons.

[1 Negnevitsky, Pearson Education, 2002

Back-prepagation neural netwerk

n Learning In a multilayer network: proceeds; the
same way as for a perceptron.

s A training set ofi Input patterns Is presented to the
network.

= [he network computes Its output pattern, and: if
there IS an error — or In other words a difference

between actual and desired output patterns — the
welghts are adjusted to reduce this error.

[1 Negnevitsky, Pearson Education, 2002

= In a back-propagation neural network:; the learning
algorithm has two phases.

m FIrst, a training input pattern Is presented to the
network input layer. The network propagates the
Input pattern from layer to layer until the output

pattern Is generated by the output layer.

m |f this pattern Is different from the desired output,
an error Is calculated and then propagated
backwards through the network from the output

layer to the input layer. The weights are modified
as the error Is propagated.

[1 Negnevitsky, Pearson Education, 2002

T hreg-layer back-propagation neuiral network

Input signals

Hidden
layer

Error signals

[1 Negnevitsky, Pearson Education, 2002

The back-propagation training algoritham

Step 1: Initialisation
Set all the weights and threshold levels, ofi the
network to randem nuMmbers uniformly.
distributed inside a small range:

where F; Is the total number of inputs of neuron I
In the network. The welght initialisation Is done
on a neuron-by-neuron basis.

[1 Negnevitsky, Pearson Education, 2002

Step 2: Activation
Activate the back-propagation neural network by

applying mputs x,(p), X,(p)s---, X.(p) and desiread
OUtpUts Yy 1(P), Vg 2(P):-- -+ Y ,n(P)-

(@) Calculate the actual outputs of the neurens In
the hidden layer:

[]n
Yj(p) = sigmoid Ty x;(p)W; (p) =0,
=1

where n Is the number of Inputs of neuron j In the
hidden layer, and sigmoid IS the sigmoid activation
function.

[1 Negnevitsky, Pearson Education, 2002

Step 2: Activation (continued)
(b) Calculate the actualioutputs of the neurens In
the output layer:

[Im
Yk (p) = sigmoid %z Xijk (P) W (p) — B
L

where m IS the number of Inputs of neuron k Inithe
output layer.

[1 Negnevitsky, Pearson Education, 2002

Step 3: Welght training
Update the weights 1n the back-propagation network
propagating hackwand the errors asseciated with
Qutput neurens.
(@) Calculate the error gradient fior the neurens In the
output layer:

Sk () = yi (p) HL— vy (p)] By (p)

ex (P) =Yg k(P)—Yk(p)

Calculate the weight corrections:
Awj (p) =a Ly (p) [y (p)
Update the weights at the output neurons:

Wi, (P +1) = wj, (p) + Awj (p)

[1 Negnevitsky, Pearson Education, 2002

Step 3: Welght training (continued)

(b) Calculate the errer gradient for the neurensin
the hidden layer:

|
0j(p)=yj(P)HL-y;(P]D Sk (p) Wi (p)
k=1

Calculate the weilght corrections:
Awi; (p) =a X (p) o (p)
Update the weights at the hidden neurons:

wij (P +1) = wjj (p) + Aw;; (p)

[1 Negnevitsky, Pearson Education, 2002

Step 4: Iteration

Increase iteration| p by one, go back to Step 2 and

repeat the process until the selected error criterion
IS satisfied.

As an example, we may consider the three-layer

back-propagation network. Suppose that the
network Is required to perform logical operation
Exclusive-OR. Recall that a single-layer perceptron
could not do this operation. Now we will apply the
three-layer net.

[1 Negnevitsky, Pearson Education, 2002

Three-layer network fior selving the
Exclusive-OR operation

Hidden layer

[1 Negnevitsky, Pearson Education, 2002

m [he effiect of the threshold applied to a meuren In the
hidden or eutput layer Is represented by its welght, 6,
connected to'a fixed input egual to —1..

a ['he itial' weights and threshold levels are set
randomly: as follows:
Wy, = 0.5, wy, = 0.9, w,, = 0.4, w,, = 1.0, Wy, = 1.2,

w,=11,06,=0.8,6,=-0.1and 6, =0.3.

[1 Negnevitsky, Pearson Education, 2002

= \\/e consider a tralning, set Where Inputs x; and X, are
equal to 1 and desiredioutput y, s Is 0. The actual

outputs of neurons 3'and 4 In the hidden layer are
calculated as

Y3 = sigmoid (XWy3 + XoWo3 —03) = 1/[1+ e—(l[().5+1[0.4—1[0.8)] — 05250

= Now the actual oeutput ofi neuron 5 In the output layer
IS determined as:

Y5 = sigmoid(yswas + YaWys —65) :1/[1+e‘(*’-52503'12+0-88°83'11‘m3>] =0.5097

m [hus, the following error IS obtained:
e =Yq5— Y5 =0-0.5097 = -0.5097

[1 Negnevitsky, Pearson Education, 2002

The next step Isi\welght training.. To update the
welghts and threshold levels in our network, we
propagate the error, e, from the output layer
packward to the Input layer.

=1ist, we calculate the error gradient for neuroen 5 in
the output layer:

s = ys (1— ys) e =0.5097 [{1-0.5097) [{~0.5097) = —0.1274

Then we determinge the weight corrections assuming
that the learning rate parameter, o, Is equal to 0.1:

AWae = [[0 = 0.1[0.5250 [{~0.1274) = -0.0067
Ay =a [y, [=0.1(0.8808 [{~0.1274) = —0.0112
AB: =a [{-1) B =0.10{~1) [{-0.1274) = -0.0127

[1 Negnevitsky, Pearson Education, 2002

s Next we calculate the error gradients for neurons 3
and 4 1n the hidden layer:

5s = Ya(L- y3) [Bs (Wyg =0.5250 ({1 0.5250) [{ - 0.1274) [{ —1.2) = 0.0381
54 =Ya (1_ y4) @5 EVV45 =(0.8808 ml_ 08808) m —-0.127 4) [1.1=-0.0147

n \WWe then determine the weight corrections:

Awys = a O B = 0.10100.0381 = 0.0038

AW23 =a D(z @3 =0.1[100.0381 =0.0038

A6, = a [-1) B, = 0.10{~1)[0.0381 = ~0.0038
AW14 =qa D(l @4 = OlIZIlQ—OOl47) =-0.0015
AW,y =a (X, (B, =0.1010{-0.0147) = —0.0015
A6, =a [{~1) [, = 0.10(~1) [{~0.0147) = 0.0015

[1 Negnevitsky, Pearson Education, 2002

n At last, we tpdate alliwelghts and threshold:

Wis = Wig +Awgg =0.5+0.0038 =0.5038
Wig =Wy +Awy, =0.9-0.0015 =0.8985
Wy3 = Wog + Awyg = 0.4 +0.0038 = 0.4038
Woy = Woy + Do, =1.0—0.0015 = 0.9985
W35 = Wgs + Awgeg = —1.2-0.0067 = —1.2067
Wys = Wys +Awys =1.1-0.0112 =1.0888

6, =6, +A8; =0.8-0.0038 =0.7962
6,=6,+A8, =-0.1+0.0015 = —0.0985

0 =0, +A6; =0.3+0.0127 =0.3127

= [he training process Is repeated until the sum of
squared errors Is less than 0.001.

[1 Negnevitsky, Pearson Education, 2002

|_earning curVve: for operation Exclusive-OR

Sum-Squared Network Error for 224 Epochs

H
o
R

|
o
N

| .
o
[
Ll
o
L
©
=
o
<P
S
S
w

[1 Negnevitsky, Pearson Education, 2002

Einal‘results ofi thiree-layer network learning

Desired Actual Sum of
output output squared
Vs errors

0.0155 0.0010
0.9849
0.9849

0.0175

[1 Negnevitsky, Pearson Education, 2002

Netwoerk represented by MceCullech-Pitts model
for selving|the Exclusive-OR operation

[1 Negnevitsky, Pearson Education, 2002

[DecIsion boundaries

(a) Decision boundary constructed by hidden neuron 3;

(b) Decision boundary constructed by hidden neuron 4;

(c) Decision boundaries constructed by the complete
three-layer network

[1 Negnevitsky, Pearson Education, 2002

Accelerated learningiin multilayer
neuralinetworks

a A multilayer network learns much faster when the
sigmoidal activation function Is represented by a
hyperhbolic tangent:

where a and b are constants.

Suitable values for a and b are:
a=1.716 and b = 0.667

[1 Negnevitsky, Pearson Education, 2002

m \We alseican accelerate training by, Including a
momentum term in the delta rule:

ijk(p) =,3ij|<(|3—1)+0 Eyj(p)mk(p)

where [5 IS a positive number (0 < 3 < 1) called the

momentum constant. Typically, the momentum
constant Is set to 0.95.

This eguation Is called the generalised delta rule.

[1 Negnevitsky, Pearson Education, 2002

_earningiwith momentum for eperation Exclusive-OR

Training for 126 Epochs

S
o
S
L
o
o
©
S
o
<P
S
S
n

Leamning Rate

[1 Negnevitsky, Pearson Education, 2002

Cearning With adaptive learning rate

0 accelerate the convergence and yet avoidithe
danger of instability, we cam apply two heuristics:

Heuristic 1

[T the change of the sum of sguared errors has the same
algebraic sign for several consequent epochs, then the
learning rate parameter, a, should be Iincreased.

Heuristic 2

If the algebraic sign of the change of the sum of
squared errors alternates for several consequent

epochs, then the learning rate parameter, a, should be
decreased.

[1 Negnevitsky, Pearson Education, 2002

s Adapting the'learning rate requires seme changes
In the back-propagation algorithm.

s If the sum of sguared errors at the curment epoch
exceeds the previous value by more than a
predefined ratio (typically 1.04), the learning; rate
parameter Is decreased (typically by multiplying

by 0.7) and new weights and thresholds are
calculated.

m If the error Is less than the previous one, the
learning rate Is increased (typically by multiplying
by 1.05).

[1 Negnevitsky, Pearson Education, 2002

[“earning withiadaptive learning rate

Training for 103 Epochs

Sum-Squared Erro|

o o o
A~ O o0

Learning Rate

o
N

o

[1 Negnevitsky, Pearson Education, 2002

|_earning withimementum and adaptive learning rate

Training for 85 Epochs

=
o
o

e
o O
RN

Sum-Squared Erro
H
o

|
o
IN

Learning Rate

[1 Negnevitsky, Pearson Education, 2002

