
Reinforcement Learning (1):
Discrete MDP, Value Iteration, Policy Iteration

Piyush Rai

CS5350/6350: Machine Learning

November 29, 2011

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Mohsen Afsharchi
Highlight

Mohsen Afsharchi
Rectangle

Mohsen Afsharchi
Rectangle

Reinforcement Learning

Supervised Learning: Uses explicit supervision (input-output pairs)

Reinforcement Learning: No explicit supervision

Learning is modeled as interactions of an agent with an environment

Based on using a feedback mechanism (in form of a reward function)

Applications:

Robotics (autonomous driving, robot locomotion, etc.)

(Computer) Game Playing

Online Advertising

Information Retrieval (interactive search)

.. and many more

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Mohsen Afsharchi
Rectangle

Markov Decision Processes (MDP)

Used for modeling the environment the agent is acting in

Defined by a tuple (S ,A, {Psa}, γ,R)

S is a set of states (today’s class: finite state space)

A is a set of actions

Psa is a probability distribution over the state space

i.e., probability of switching to some state s
′ if we took action a in state s

For finite state spaces, Psa is a vector of size |S | (and sums to 1)

R : S × A 7→ R is the reward function (function of state-action pairs)

Note: Often the reward is a function of the state only R : S 7→ R

γ ∈ [0, 1) is called discount factor for future rewards

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Mohsen Afsharchi
Rectangle

MDP Dynamics

Start in some state s0 ∈ S

Choose action a0 ∈ A in state s0

New MDP state s1 ∈ S chosen according to Ps0a0 : s1 ∼ Ps0a0

Choose action a1 ∈ A in state s1

New MDP state s2 ∈ S chosen according to Ps1a1 : s2 ∼ Ps1a1

Choose action a2 ∈ A in state s2, and so on..

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Payoff and Expected Payoff

Payoff defines the cumulative reward

Upon visiting states s0, s1, . . . with actions a0, a1, . . ., the payoff:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

Reward at time t is discounted by γt (note: γ < 1)

We care more about immediate rewards, rather than the future rewards

If rewards defined in terms of states only, then the payoff:

R(s0) + γR(s1) + γ2R(s2) + . . .

We want to choose actions over time to maximize the expected payoff:

E[R(s0) + γR(s1) + γ2R(s2) + . . .]

Expectation is w.r.t. all possibilities for the initial state

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Policy Function

Policy is a function π : S 7→ A, mapping from the states to the actions

For an agent with policy π, the action in state s: a = π(s)

Value Function for a policy π

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

V π(s) is the expected payoff starting in state s and following policy π

Bellman’s Equation: Gives a recursive definition of the Value Function:

V π(s) = R(s) + γ
∑

s′∈S

Psπ(s)(s
′)V π(s ′)

= R(s) + Es′∼Psπ(s)
[V π(s ′)]

It’s the immediate reward + expected sum of future discounted rewards

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Computing the Value Function

Bellman’s equation can be used to compute the value function V π(s)

V π(s) = R(s) + γ
∑

s′∈S

Psπ(s)(s
′)V π(s ′)

For an MDP with finite many state, it gives us |S | equations with |S |
unknowns ⇒ Efficiently solvable

Optimal Value Function is defined as:

V ∗(s) = max
π

V π(s)

It’s the best possible payoff that any policy π can give

The Optimal Value Function can also be defined as:

V ∗(s) = R(s) + max
a∈A

γ
∑

s′∈S

Psa(s
′)V ∗(s ′)

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Optimal Policy

The Optimal Value Function:

V ∗(s) = R(s) + max
a∈A

γ
∑

s′∈S

Psa(s
′)V ∗(s ′)

Optimal Policy π∗ : S 7→ A:

π∗(s) = argmax
a∈A

∑

s′∈S

Psa(s
′)V ∗(s ′)

The optimal policy for state s gives the action a that maximizes the optimal
value function for that state

For every state s and every policy π

V ∗(s) = V π
∗

(s) ≥ V π(s)

Note: π∗ is the optimal policy function for all states s

Doesn’t matter what the initial MDP state is

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Finding the Optimal Policy

Optimal Policy π∗ : S 7→ A:

π∗(s) = argmax
a∈A

∑

s′∈S

Psa(s
′)V ∗(s ′) (1)

Two standard methods to find it

Value Iteration: Zero-initialize and iteratively refine V (s) as it will converge
towards V ∗(s). Finally use equation 1 to find the optimal policy π∗

Policy Iteration: Random-initialize and iteratively refine π(s) by alternating
between computing V (s) and then π(s) as per equation 1. π eventually
converges to the optimal policy π∗

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Finding the Optimal Policy: Value Iteration

Iteratively compute/refine the value function V until convergence

Value Iteration property: V converges to V ∗

Upon convergence, use π∗(s) = argmaxa∈A

∑
s′∈S Psa(s

′)V ∗(s ′)

Note: The inner loop can update V (s) for all states simultaneously, or in
some order

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Finding the Optimal Policy: Policy Iteration

Iteratively compute/refine the policy π until convergence

Step (a) the computes the value function for the current policy π

Can be done using Bellman’s equations (solving |S | equations in |S | unknowns)

Step (b) gives the policy that is greedy w.r.t. V

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Learning an MDP Model

So far we assumed:

State transition probabilities {Psa} are given

Rewards R(s) at each state are known

Often we don’t know these and want to learn these

These are learned using experience (i.e., a set of previous trials)

s
(j)
i is the state at time i of trial j

a
(j)
i is the corresponding action at that state

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Learning an MDP Model

Given this experience, the MLE estimate of state transition probabilities:

Psa(s
′) =

of times we took action a in state s and got to s ′

of times we took action a in state s

Note: if action a is never taken in state s, the above ratio is 0/0

In that case: Psa(s
′) = 1/|S | (uniform distribution over all states)

Psa is easy to update if we gather more experience (i.e., do more trials)

.. just add counts in the numerator and denominator

Likewise, the expected reward R(s) in state s can be computed

R(s) = average reward in state s across all the trials

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

MDP Learning + Policy Learning

Alternate between learning the MDP (Psa and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (uses value iteration)

Randomly initialize policy π

Repeat until convergence
1 Execute policy π in the MDP to generate a set of trials

2 Use this “experience” to estimate Psa and R

3 Apply value iteration with the estimated Psa and R

⇒ Gives a new estimate of the value function V

4 Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the
previous iteration

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Value Iteration vs Policy Iteration

Small state spaces: Policy Iteration typically very fast and converges quickly

Large state spaces: Policy Iteration may be slow

Reason: Policy Iteration needs to solve a large system of linear equations

Value iteration is preferred in such cases

Very large state spaces: Value function can be approximated using some
regression algorithm

Optimality guarantee is lost however

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

Next Class

Continuous state MDP

State-space discretization

Value function approximation

(CS5350/6350) Reinforcement Learning (1) November 29, 2011

