Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning

- Supervised Learning: Uses explicit supervision (input-output pairs)
- Reinforcement Learning: No explicit supervision
- Learning is modeled as interactions of an agent with an environment
 - Based on using a feedback mechanism (in form of a reward function)
- Applications:
 - Robotics (autonomous driving, robot locomotion, etc.)
 - (Computer) Game Playing
 - Online Advertising
 - Information Retrieval (interactive search)
 - .. and many more

Markov Decision Processes (MDP)

Used for modeling the environment the agent is acting in

Defined by a tuple $(S, A, \{P_{sa}\}, \gamma, R)$

- S is a set of states (today's class: finite state space)
- A is a set of actions
- \bullet P_{sa} is a probability distribution over the state space
 - ullet i.e., probability of switching to some state s' if we took action a in state s
 - For finite state spaces, P_{sa} is a vector of size |S| (and sums to 1)
- $R: S \times A \mapsto \mathbb{R}$ is the reward function (function of state-action pairs)
 - ullet Note: Often the reward is a function of the state only $R:S\mapsto \mathbb{R}$
- $\gamma \in [0,1)$ is called discount factor for future rewards

MDP Dynamics

- Start in some state $s_0 \in S$
- Choose action $a_0 \in A$ in state s_0
- New MDP state $s_1 \in S$ chosen according to $P_{s_0 a_0}$: $s_1 \sim P_{s_0 a_0}$
- Choose action $a_1 \in A$ in state s_1
- New MDP state $s_2 \in S$ chosen according to $P_{s_1 a_1}$: $s_2 \sim P_{s_1 a_1}$
- Choose action $a_2 \in A$ in state s_2 , and so on..

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} \dots$$

Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots , the payoff:

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \dots$$

- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
 - We care more about immediate rewards, rather than the future rewards
- If rewards defined in terms of states only, then the payoff:

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

• We want to choose actions over time to maximize the expected payoff:

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots]$$

Expectation is w.r.t. all possibilities for the initial state

4 □ ト ← □ ト ← 亘 ト ← 亘 ・ り Q (や)

Policy Function

- **Policy** is a function $\pi: S \mapsto A$, mapping from the states to the actions
- For an agent with policy π , the action in state s: $a = \pi(s)$
- Value Function for a policy π

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

- $V^{\pi}(s)$ is the expected payoff starting in state s and following policy π
- Bellman's Equation: Gives a recursive definition of the Value Function:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$
$$= R(s) + \mathbb{E}_{s' \sim P_{s\pi(s)}}[V^{\pi}(s')]$$

• It's the immediate reward + expected sum of future discounted rewards

4□ > 4□ > 4□ > 4□ > 4□ > □
9

Computing the Value Function

ullet Bellman's equation can be used to compute the value function $V^\pi(s)$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

- For an MDP with finite many state, it gives us |S| equations with |S| unknowns \Rightarrow Efficiently solvable
- Optimal Value Function is defined as:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

- ullet It's the best possible payoff that any policy π can give
- The Optimal Value Function can also be defined as:

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$

Optimal Policy

• The Optimal Value Function:

$$V^*(s) = R(s) + \max_{s \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$

• Optimal Policy $\pi^*: S \mapsto A$:

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s')V^*(s')$$

- The optimal policy for state s gives the action a that maximizes the optimal value function for that state
- For every state s and every policy π

$$V^*(s) = V^{\pi^*}(s) \geq V^{\pi}(s)$$

- Note: π^* is the optimal policy function for all states s
 - Doesn't matter what the initial MDP state is

4 D > 4 D > 4 D > 4 D > 4 D > 9 Q Q

Finding the Optimal Policy

• Optimal Policy $\pi^* : S \mapsto A$:

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$$
 (1)

- Two standard methods to find it
 - Value Iteration: Zero-initialize and iteratively refine V(s) as it will converge towards $V^*(s)$. Finally use equation 1 to find the optimal policy π^*
 - Policy Iteration: Random-initialize and iteratively refine $\pi(s)$ by alternating between computing V(s) and then $\pi(s)$ as per equation 1. π eventually converges to the optimal policy π^*

Finding the Optimal Policy: Value Iteration

Iteratively compute/refine the value function V until convergence

- 1. For each state s, initialize V(s) := 0.
- 2. Repeat until convergence { For every state, update $V(s):=R(s)+\max_{a\in A}\gamma\sum_{s'}P_{sa}(s')V(s').$ }
- Value Iteration property: V converges to V^*
- Upon convergence, use $\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$
- Note: The inner loop can update V(s) for all states simultaneously, or in some order

Finding the Optimal Policy: Policy Iteration

Iteratively compute/refine the policy π until convergence

- 1. Initialize π randomly.
- 2. Repeat until convergence {
 - (a) Let $V := V^{\pi}$.
 - (b) For each state s, let $\pi(s) := \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$.

}

- ullet Step (a) the computes the value function for the current policy π
 - ullet Can be done using Bellman's equations (solving |S| equations in |S| unknowns)
- Step (b) gives the policy that is greedy w.r.t. V

Learning an MDP Model

- So far we assumed:
 - State transition probabilities $\{P_{sa}\}$ are given
 - Rewards R(s) at each state are known
- Often we don't know these and want to learn these
- These are learned using experience (i.e., a set of previous trials)

$$s_0^{(1)} \xrightarrow{a_0^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}} s_3^{(1)} \xrightarrow{a_3^{(1)}} \dots$$

$$s_0^{(2)} \xrightarrow{a_0^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}} s_3^{(2)} \xrightarrow{a_3^{(2)}} \dots$$

$$\dots$$

- $s_i^{(j)}$ is the state at time i of trial j
- $a_i^{(j)}$ is the corresponding action at that state

Learning an MDP Model

Given this experience, the MLE estimate of state transition probabilities:

$$P_{sa}(s') = \frac{\text{\# of times we took action } a \text{ in state } s \text{ and got to } s'}{\text{\# of times we took action } a \text{ in state } s}$$

- Note: if action a is never taken in state s, the above ratio is 0/0
 - In that case: $P_{sa}(s') = 1/|S|$ (uniform distribution over all states)
- \bullet P_{sa} is easy to update if we gather more experience (i.e., do more trials)
 - .. just add counts in the numerator and denominator
- Likewise, the expected reward R(s) in state s can be computed
 - R(s) = average reward in state s across all the trials

MDP Learning + Policy Learning

Alternate between learning the MDP (P_{sa} and R), and learning the policy Policy learning step can be done using value iteration or policy iteration

The Algorithm (uses value iteration)

- Randomly initialize policy π
- Repeat until convergence
 - **1** Execute policy π in the MDP to generate a set of trials
 - ② Use this "experience" to estimate P_{sa} and R
 - **(a)** Apply value iteration with the estimated P_{sa} and R
 - \Rightarrow Gives a new estimate of the value function V
 - Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration

Value Iteration vs Policy Iteration

- Small state spaces: Policy Iteration typically very fast and converges quickly
- Large state spaces: Policy Iteration may be slow
 - Reason: Policy Iteration needs to solve a large system of linear equations
 - Value iteration is preferred in such cases
- Very large state spaces: Value function can be approximated using some regression algorithm
 - Optimality guarantee is lost however

Next Class

- Continuous state MDP
 - State-space discretization
 - Value function approximation