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What is Learning?

• Herbert Simon: “Learning is any process by 
which a system improves performance from 
experience.”

• What is the task?
– Classification
– Making Intelligent Decision (Problem solving / 

planning / control)
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Classification

• Assign object/event to one of a given finite set of 
categories.
– Medical diagnosis
– Credit card applications or transactions
– Fraud detection in e-commerce
– Worm detection in network packets
– Spam filtering in email
– Recommended articles in a newspaper
– Recommended books, movies, music, or jokes
– Financial investments
– DNA sequences
– Spoken words
– Handwritten letters
– Astronomical images
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Problem Solving / Planning / Control

• Performing actions in an environment in order to 
achieve a goal.
– Solving calculus problems
– Playing checkers, chess
– Balancing a pole
– Driving a car or a jeep
– Flying a plane, helicopter, or rocket
– Controlling an elevator
– Controlling a character in a video game
– Controlling a mobile robot
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Measuring Performance

• Classification Accuracy
• Solution correctness
• Solution quality (length, efficiency)
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Why Study Machine Learning?
Engineering Better Computing Systems

• Develop systems that are too difficult/expensive to 
construct manually because they require specific detailed 
skills or knowledge tuned to a specific task (knowledge 
engineering bottleneck).

• Develop systems that can automatically adapt and 
customize themselves to individual users.
– Personalized news or mail filter
– Personalized tutoring

• Discover new knowledge from large databases (data 
mining).
– Market basket analysis (e.g. diapers and beer)
– Medical text mining (e.g. migraines to calcium channel blockers to 

magnesium)
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Example 1
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Why Study Machine Learning?
Cognitive Science

• Computational studies of learning may help us 
understand learning in humans and other 
biological organisms.
– Hebbian neural learning

• “Neurons that fire together, wire together.”
– Human’s relative difficulty of learning disjunctive 

concepts vs. conjunctive ones.
– Power law of practice (the logarithm of the reaction time for a particular task decreases 

linearly with the logarithm of the number of practice trials taken )

log(# training trials)
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Why Study Machine Learning?
The Time is Ripe

• Many basic effective and efficient 
algorithms available.

• Large amounts of on-line data available.
• Large amounts of computational resources 

available.
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Related Disciplines

• Artificial Intelligence
• Data Mining
• Probability and Statistics
• Information theory
• Numerical optimization
• Computational complexity theory
• Control theory (adaptive)
• Psychology (developmental, cognitive)
• Neurobiology
• Linguistics
• Philosophy
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Supervised Learning
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Example2 : Document Classification
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Example 3: Binary Classification
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Modelling
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Estimation
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Estimation: mistake driven algorithm
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Evaluation
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Supervised learning beyond classification
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Regression
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Regression
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Generalization
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Unsupervised Learning
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Example 
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More unsupervised learning
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Other learning scenarios
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Defining the Learning Task
Improve on task, T, with respect to 

performance metric, P, based on experience, E.

T: Playing checkers
P: Percentage of games won against an arbitrary opponent 
E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified
E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors
P: Average distance traveled before a human-judged error
E: A sequence of images and steering commands recorded while

observing a human driver.

T: Categorize email messages as spam or legitimate.
P: Percentage of email messages correctly classified.
E: Database of emails, some with human-given labels
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Designing a Learning System

• Choose the training experience
• Choose exactly what is too be learned, i.e. the 

target function.
• Choose how to represent the target function.
• Choose a learning algorithm to infer the target 

function from the experience.

Environment/
Experience

Learner

Knowledge

Performance
Element
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Sample Learning Problem

• Learn to play checkers from self-play
• We will develop an approach analogous to 

that used in the  first machine learning 
system developed by Arthur Samuels at 
IBM in 1959.
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Training Experience

• Direct experience: Given sample input and output 
pairs for a useful target function.
– Checker boards labeled with the correct move, e.g. 

extracted from record of expert play
• Indirect experience: Given feedback which is not

direct I/O pairs for a useful target function.
– Potentially arbitrary sequences of game moves and their 

final game results.
• Credit/Blame Assignment Problem: How to assign 

credit blame to individual moves given only 
indirect feedback? 
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Source of Training Data

• Provided random examples outside of the learner’s 
control.
– Negative examples available or only positive?

• Good training examples selected by a “benevolent 
teacher.”
– “Near miss” examples

• Learner can query an oracle about class of an 
unlabeled example in the environment.

• Learner can construct an arbitrary example and 
query an oracle for its label.

• Learner can  design and run experiments directly 
in the environment without any human guidance.
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Training vs. Test Distribution

• Generally assume that the training and test 
examples are independently drawn from the 
same overall distribution of data.
– IID: Independently and identically distributed

• If examples are not independent, requires 
collective classification.

• If test distribution is different, requires 
transfer learning.
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Choosing a Target Function

• What function is to be learned and how will it be 
used by the performance system?

• For checkers, assume we are given a function for 
generating the legal moves for a given board position 
and want to decide the best move.
– Could learn a function:

ChooseMove(board, legal-moves) → best-move
– Or could learn an evaluation function, V(board) → R, that 

gives each board position a score for how favorable it is. V
can be used to pick a move by applying each legal move, 
scoring the resulting board position, and choosing the 
move that results in the highest scoring board position.
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Ideal Definition of V(b)

• If b is a final winning board, then V(b) = 100
• If b is a final losing board, then V(b) = –100
• If b is a final draw board, then V(b) = 0
• Otherwise, then V(b) = V(b´), where b´ is the 

highest scoring final board position that is achieved 
starting from b and playing optimally until the end 
of the game (assuming the opponent plays 
optimally as well).
– Can be computed using complete mini-max search of the 

finite game tree. 
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Approximating V(b)

• Computing V(b) is intractable since it 
involves searching the complete exponential 
game tree.

• Therefore, this definition is said to be non-
operational.

• An operational definition can be computed 
in reasonable (polynomial) time. 

• Need to learn an operational approximation
to the ideal evaluation function.
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Representing the Target Function

• Target function can be represented in many ways: 
lookup table, symbolic rules, numerical function, 
neural network.

• There is a trade-off between the expressiveness of 
a representation and the ease of learning. 

• The more expressive a representation, the better it 
will be at approximating an arbitrary function; 
however, the more examples will be needed to 
learn an accurate function.
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Linear Function for Representing V(b)

• In checkers, use a linear approximation of the 
evaluation function.

– bp(b): number of black pieces on board b
– rp(b): number of red pieces on board b
– bk(b): number of black kings on board b 
– rk(b): number of red kings on board b
– bt(b): number of black pieces threatened (i.e. which can 

be immediately taken by red on its next turn)
– rt(b): number of red pieces threatened

)()()()()()()( 6543210 brtwbbtwbrkwbbkwbrpwbbpwwbV ⋅+⋅+⋅+⋅+⋅+⋅+=
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Obtaining Training Values

• Direct supervision may be available for the 
target function.
– < <bp=3,rp=0,bk=1,rk=0,bt=0,rt=0>, 100>          

(win for black)
• With indirect feedback, training values can 

be estimated using temporal difference 
learning (used in reinforcement learning
where supervision is delayed reward).
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Temporal Difference Learning

• Estimate training values for intermediate (non-
terminal) board positions by the estimated value of 
their successor in an actual game trace. 

where successor(b) is the next board position 
where it is the program’s move in actual play.

• Values towards the end of the game are initially 
more accurate and continued training slowly 
“backs up” accurate values to earlier board 
positions.
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Learning Algorithm

• Uses training values for the target function to 
induce a hypothesized definition that fits these 
examples and hopefully generalizes to unseen 
examples.

• In statistics, learning to approximate a continuous 
function is called regression.

• Attempts to minimize some measure of error (loss 
function) such as mean squared error:
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Least Mean Squares (LMS) Algorithm

• A gradient descent algorithm that incrementally 
updates the weights of a linear function in an 
attempt to minimize the mean squared error
Until weights converge :

For each training example b do :
1) Compute the absolute error :

2) For each board feature, fi, update its weight, wi :

for some small constant (learning rate) c
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LMS Discussion

• Intuitively, LMS executes the following rules:
– If the output for an example is correct, make no change.
– If the output is too high, lower the weights proportional 

to the values of their corresponding features, so the 
overall output decreases

– If the output is too low, increase the weights 
proportional to the values of their corresponding 
features, so the overall output increases.

• Under the proper weak assumptions, LMS can be 
proven to eventetually converge to a set of weights 
that minimizes the mean squared error.
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Lessons Learned about Learning

• Learning can be viewed as using direct or indirect 
experience to approximate a chosen target 
function.

• Function approximation can be viewed as a search 
through a space of hypotheses (representations of 
functions) for one that best fits a set of training 
data.

• Different learning methods assume different 
hypothesis spaces (representation languages) 
and/or employ different search techniques.
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Various Function Representations
• Numerical functions

– Linear regression
– Neural networks
– Support vector machines

• Symbolic functions
– Decision trees
– Rules in propositional logic
– Rules in first-order predicate logic

• Instance-based functions
– Nearest-neighbor
– Case-based

• Probabilistic Graphical Models
– Naïve Bayes
– Bayesian networks
– Hidden-Markov Models  (HMMs)
– Markov networks
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Various Search Algorithms

• Gradient descent
– Perceptron
– Backpropagation

• Dynamic Programming
– HMM Learning

• Divide and Conquer
– Decision tree induction
– Rule learning

• Evolutionary Computation
– Genetic Algorithms (GAs)
– Genetic Programming (GP)
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Evaluation of Learning Systems

• Experimental
– Conduct controlled cross-validation experiments to compare 

various methods on a variety of benchmark datasets.
– Gather data on their performance, e.g. test accuracy, training-time, 

testing-time.
– Analyze differences for statistical significance.

• Theoretical
– Analyze algorithms mathematically and prove theorems about 

their:
• Computational complexity
• Ability to fit training data
• Sample complexity (number of training examples needed to learn an 

accurate function)
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History of Machine Learning
• 1950s

– Samuel’s checker player
– Selfridge’s Pandemonium

• 1960s: 
– Neural networks: Perceptron
– Pattern recognition 
– Learning in the limit theory
– Minsky and Papert prove limitations of Perceptron

• 1970s: 
– Symbolic concept induction
– Winston’s arch learner
– Expert systems and the knowledge acquisition bottleneck
– Quinlan’s ID3
– Michalski’s AQ and soybean diagnosis
– Scientific discovery with BACON
– Mathematical discovery with AM
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History of Machine Learning (cont.)
• 1980s:

– Advanced decision tree and rule learning
– Explanation-based Learning (EBL)
– Learning and planning and problem solving
– Utility problem
– Analogy
– Cognitive architectures
– Resurgence of neural networks (connectionism, backpropagation)
– Valiant’s PAC Learning Theory
– Focus on experimental methodology

• 1990s
– Data mining
– Adaptive software agents and web applications
– Text learning
– Reinforcement learning (RL)
– Inductive Logic Programming (ILP)
– Ensembles: Bagging, Boosting, and Stacking
– Bayes Net learning
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History of Machine Learning (cont.)

• 2000s
– Support vector machines
– Kernel methods
– Graphical models
– Statistical relational learning
– Transfer learning
– Sequence labeling
– Collective classification and structured outputs
– Computer Systems Applications

• Compilers
• Debugging
• Graphics
• Security (intrusion, virus, and worm detection)

– Email management
– Personalized assistants that learn
– Learning in robotics and vision


