
1

Machine Learning
Introduction

Mohsen Afsharchi
IASBS

2

What is Learning?

• Herbert Simon: “Learning is any process by
which a system improves performance from
experience.”

• What is the task?
– Classification
– Making Intelligent Decision (Problem solving /

planning / control)

3

Classification

• Assign object/event to one of a given finite set of
categories.
– Medical diagnosis
– Credit card applications or transactions
– Fraud detection in e-commerce
– Worm detection in network packets
– Spam filtering in email
– Recommended articles in a newspaper
– Recommended books, movies, music, or jokes
– Financial investments
– DNA sequences
– Spoken words
– Handwritten letters
– Astronomical images

4

Problem Solving / Planning / Control

• Performing actions in an environment in order to
achieve a goal.
– Solving calculus problems
– Playing checkers, chess
– Balancing a pole
– Driving a car or a jeep
– Flying a plane, helicopter, or rocket
– Controlling an elevator
– Controlling a character in a video game
– Controlling a mobile robot

5

Measuring Performance

• Classification Accuracy
• Solution correctness
• Solution quality (length, efficiency)

6

Why Study Machine Learning?
Engineering Better Computing Systems

• Develop systems that are too difficult/expensive to
construct manually because they require specific detailed
skills or knowledge tuned to a specific task (knowledge
engineering bottleneck).

• Develop systems that can automatically adapt and
customize themselves to individual users.
– Personalized news or mail filter
– Personalized tutoring

• Discover new knowledge from large databases (data
mining).
– Market basket analysis (e.g. diapers and beer)
– Medical text mining (e.g. migraines to calcium channel blockers to

magnesium)

7

Example 1

8

Why Study Machine Learning?
Cognitive Science

• Computational studies of learning may help us
understand learning in humans and other
biological organisms.
– Hebbian neural learning

• “Neurons that fire together, wire together.”
– Human’s relative difficulty of learning disjunctive

concepts vs. conjunctive ones.
– Power law of practice (the logarithm of the reaction time for a particular task decreases

linearly with the logarithm of the number of practice trials taken)

log(# training trials)

lo
g(

pe
rf

. t
im

e)

9

Why Study Machine Learning?
The Time is Ripe

• Many basic effective and efficient
algorithms available.

• Large amounts of on-line data available.
• Large amounts of computational resources

available.

10

Related Disciplines

• Artificial Intelligence
• Data Mining
• Probability and Statistics
• Information theory
• Numerical optimization
• Computational complexity theory
• Control theory (adaptive)
• Psychology (developmental, cognitive)
• Neurobiology
• Linguistics
• Philosophy

11

Supervised Learning

12

Example2 : Document Classification

13

Example 3: Binary Classification

14

Modelling

15

Estimation

16

Estimation: mistake driven algorithm

17

Evaluation

18

Supervised learning beyond classification

19

Regression

20

Regression

21

Generalization

22

Unsupervised Learning

23

Example

24

More unsupervised learning

25

Other learning scenarios

26

Defining the Learning Task
Improve on task, T, with respect to

performance metric, P, based on experience, E.

T: Playing checkers
P: Percentage of games won against an arbitrary opponent
E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified
E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors
P: Average distance traveled before a human-judged error
E: A sequence of images and steering commands recorded while

observing a human driver.

T: Categorize email messages as spam or legitimate.
P: Percentage of email messages correctly classified.
E: Database of emails, some with human-given labels

27

Designing a Learning System

• Choose the training experience
• Choose exactly what is too be learned, i.e. the

target function.
• Choose how to represent the target function.
• Choose a learning algorithm to infer the target

function from the experience.

Environment/
Experience

Learner

Knowledge

Performance
Element

28

Sample Learning Problem

• Learn to play checkers from self-play
• We will develop an approach analogous to

that used in the first machine learning
system developed by Arthur Samuels at
IBM in 1959.

29

Training Experience

• Direct experience: Given sample input and output
pairs for a useful target function.
– Checker boards labeled with the correct move, e.g.

extracted from record of expert play
• Indirect experience: Given feedback which is not

direct I/O pairs for a useful target function.
– Potentially arbitrary sequences of game moves and their

final game results.
• Credit/Blame Assignment Problem: How to assign

credit blame to individual moves given only
indirect feedback?

30

Source of Training Data

• Provided random examples outside of the learner’s
control.
– Negative examples available or only positive?

• Good training examples selected by a “benevolent
teacher.”
– “Near miss” examples

• Learner can query an oracle about class of an
unlabeled example in the environment.

• Learner can construct an arbitrary example and
query an oracle for its label.

• Learner can design and run experiments directly
in the environment without any human guidance.

31

Training vs. Test Distribution

• Generally assume that the training and test
examples are independently drawn from the
same overall distribution of data.
– IID: Independently and identically distributed

• If examples are not independent, requires
collective classification.

• If test distribution is different, requires
transfer learning.

32

Choosing a Target Function

• What function is to be learned and how will it be
used by the performance system?

• For checkers, assume we are given a function for
generating the legal moves for a given board position
and want to decide the best move.
– Could learn a function:

ChooseMove(board, legal-moves) → best-move
– Or could learn an evaluation function, V(board) → R, that

gives each board position a score for how favorable it is. V
can be used to pick a move by applying each legal move,
scoring the resulting board position, and choosing the
move that results in the highest scoring board position.

33

Ideal Definition of V(b)

• If b is a final winning board, then V(b) = 100
• If b is a final losing board, then V(b) = –100
• If b is a final draw board, then V(b) = 0
• Otherwise, then V(b) = V(b´), where b´ is the

highest scoring final board position that is achieved
starting from b and playing optimally until the end
of the game (assuming the opponent plays
optimally as well).
– Can be computed using complete mini-max search of the

finite game tree.

34

Approximating V(b)

• Computing V(b) is intractable since it
involves searching the complete exponential
game tree.

• Therefore, this definition is said to be non-
operational.

• An operational definition can be computed
in reasonable (polynomial) time.

• Need to learn an operational approximation
to the ideal evaluation function.

35

Representing the Target Function

• Target function can be represented in many ways:
lookup table, symbolic rules, numerical function,
neural network.

• There is a trade-off between the expressiveness of
a representation and the ease of learning.

• The more expressive a representation, the better it
will be at approximating an arbitrary function;
however, the more examples will be needed to
learn an accurate function.

36

Linear Function for Representing V(b)

• In checkers, use a linear approximation of the
evaluation function.

– bp(b): number of black pieces on board b
– rp(b): number of red pieces on board b
– bk(b): number of black kings on board b
– rk(b): number of red kings on board b
– bt(b): number of black pieces threatened (i.e. which can

be immediately taken by red on its next turn)
– rt(b): number of red pieces threatened

)()()()()()()(6543210 brtwbbtwbrkwbbkwbrpwbbpwwbV ⋅+⋅+⋅+⋅+⋅+⋅+=
)

37

Obtaining Training Values

• Direct supervision may be available for the
target function.
– < <bp=3,rp=0,bk=1,rk=0,bt=0,rt=0>, 100>

(win for black)
• With indirect feedback, training values can

be estimated using temporal difference
learning (used in reinforcement learning
where supervision is delayed reward).

38

Temporal Difference Learning

• Estimate training values for intermediate (non-
terminal) board positions by the estimated value of
their successor in an actual game trace.

where successor(b) is the next board position
where it is the program’s move in actual play.

• Values towards the end of the game are initially
more accurate and continued training slowly
“backs up” accurate values to earlier board
positions.

))successor(()(bVbVtrain

)
=

39

Learning Algorithm

• Uses training values for the target function to
induce a hypothesized definition that fits these
examples and hopefully generalizes to unseen
examples.

• In statistics, learning to approximate a continuous
function is called regression.

• Attempts to minimize some measure of error (loss
function) such as mean squared error:

B

bVbV
E Bb

train∑
∈

−
=

2)]()([
)

40

Least Mean Squares (LMS) Algorithm

• A gradient descent algorithm that incrementally
updates the weights of a linear function in an
attempt to minimize the mean squared error
Until weights converge :

For each training example b do :
1) Compute the absolute error :

2) For each board feature, fi, update its weight, wi :

for some small constant (learning rate) c

)()()(bVbVberror train

)
−=

)(berrorfcww iii ⋅⋅+=

41

LMS Discussion

• Intuitively, LMS executes the following rules:
– If the output for an example is correct, make no change.
– If the output is too high, lower the weights proportional

to the values of their corresponding features, so the
overall output decreases

– If the output is too low, increase the weights
proportional to the values of their corresponding
features, so the overall output increases.

• Under the proper weak assumptions, LMS can be
proven to eventetually converge to a set of weights
that minimizes the mean squared error.

42

Lessons Learned about Learning

• Learning can be viewed as using direct or indirect
experience to approximate a chosen target
function.

• Function approximation can be viewed as a search
through a space of hypotheses (representations of
functions) for one that best fits a set of training
data.

• Different learning methods assume different
hypothesis spaces (representation languages)
and/or employ different search techniques.

43

Various Function Representations
• Numerical functions

– Linear regression
– Neural networks
– Support vector machines

• Symbolic functions
– Decision trees
– Rules in propositional logic
– Rules in first-order predicate logic

• Instance-based functions
– Nearest-neighbor
– Case-based

• Probabilistic Graphical Models
– Naïve Bayes
– Bayesian networks
– Hidden-Markov Models (HMMs)
– Markov networks

44

Various Search Algorithms

• Gradient descent
– Perceptron
– Backpropagation

• Dynamic Programming
– HMM Learning

• Divide and Conquer
– Decision tree induction
– Rule learning

• Evolutionary Computation
– Genetic Algorithms (GAs)
– Genetic Programming (GP)

45

Evaluation of Learning Systems

• Experimental
– Conduct controlled cross-validation experiments to compare

various methods on a variety of benchmark datasets.
– Gather data on their performance, e.g. test accuracy, training-time,

testing-time.
– Analyze differences for statistical significance.

• Theoretical
– Analyze algorithms mathematically and prove theorems about

their:
• Computational complexity
• Ability to fit training data
• Sample complexity (number of training examples needed to learn an

accurate function)

46

History of Machine Learning
• 1950s

– Samuel’s checker player
– Selfridge’s Pandemonium

• 1960s:
– Neural networks: Perceptron
– Pattern recognition
– Learning in the limit theory
– Minsky and Papert prove limitations of Perceptron

• 1970s:
– Symbolic concept induction
– Winston’s arch learner
– Expert systems and the knowledge acquisition bottleneck
– Quinlan’s ID3
– Michalski’s AQ and soybean diagnosis
– Scientific discovery with BACON
– Mathematical discovery with AM

47

History of Machine Learning (cont.)
• 1980s:

– Advanced decision tree and rule learning
– Explanation-based Learning (EBL)
– Learning and planning and problem solving
– Utility problem
– Analogy
– Cognitive architectures
– Resurgence of neural networks (connectionism, backpropagation)
– Valiant’s PAC Learning Theory
– Focus on experimental methodology

• 1990s
– Data mining
– Adaptive software agents and web applications
– Text learning
– Reinforcement learning (RL)
– Inductive Logic Programming (ILP)
– Ensembles: Bagging, Boosting, and Stacking
– Bayes Net learning

48

History of Machine Learning (cont.)

• 2000s
– Support vector machines
– Kernel methods
– Graphical models
– Statistical relational learning
– Transfer learning
– Sequence labeling
– Collective classification and structured outputs
– Computer Systems Applications

• Compilers
• Debugging
• Graphics
• Security (intrusion, virus, and worm detection)

– Email management
– Personalized assistants that learn
– Learning in robotics and vision

