Machine Learning
Introduction

Mohsen Afsharchi
IASBS

What 1s Learning?

» Herbert Simon: “Learning 1s any process by
which a system improves performance from
experience.”

 What 1s the task?

— Classification

— Making Intelligent Decision (Problem solving /
planning / control)

Classification

* Assign object/event to one of a given finite set of
categories.
— Medical diagnosis
— Credit card applications or transactions
— Fraud detection in e-commerce
— Worm detection in network packets
— Spam filtering in email
— Recommended articles in a newspaper
— Recommended books, movies, music, or jokes
— Financial investments
— DNA sequences
— Spoken words
— Handwritten letters
— Astronomical images

Problem Solving / Planning / Control

* Performing actions in an environment 1n order to
achieve a goal.
— Solving calculus problems
— Playing checkers, chess
— Balancing a pole
— Driving a car or a jeep
— Flying a plane, helicopter, or rocket
— Controlling an elevator
— Controlling a character 1n a video game

— Controlling a mobile robot

Measuring Performance

 Classification Accuracy
e Solution correctness

* Solution quality (length, efficiency)

Why Study Machine Learning?
Engineering Better Computing Systems

* Develop systems that are too difficult/expensive to
construct manually because they require specific detailed
skills or knowledge tuned to a specific task (knowledge
engineering bottleneck).

* Develop systems that can automatically adapt and
customize themselves to individual users.
— Personalized news or mail filter
— Personalized tutoring

* Discover new knowledge from large databases (data
mining).
— Market basket analysis (e.g. diapers and beer)

— Medical text mining (e.g. migraines to calcium channel blockers to
magnesium)

Example 1

We are given categories for these images: What are these?
From ETH database of object categories, [Leibe & Schiele 2003

e A classification problem: predict category y based on image x.
e Little chance to “hand-craft” a solution, without learning.

e Applications: robotics, HCI, web search (a real image Google...)

Why Study Machine Learning?
Cognitive Science

« Computational studies of learning may help us
understand learning 1n humans and other
biological organisms.

— Hebbian neural learning
* “Neurons that fire together, wire together.”

— Human’s relative difficulty of learning disjunctive
concepts vs. conjunctive ones.

- POW@I’ laW Of pI'aCtICC (the logarithm of the reaction time for a particular task decreases

linearly with the logarithm of the number of practice trials taken)

log(perf. time)

log(# training trials)

Why Study Machine Learning?
The Time 1s Ripe

* Many basic effective and efficient
algorithms available.
» Large amounts of on-line data available.

» Large amounts of computational resources
available.

Related Disciplines

Artificial Intelligence

Data Mining

Probability and Statistics
Information theory

Numerical optimization
Computational complexity theory
Control theory (adaptive)
Psychology (developmental, cognitive)
Neurobiology

Linguistics

Philosophy

10

Supervised Learning

This is an example of supervised learning, which consists of the following basic
steps:

e Data collection Start with training data for which we know the correct outcome
provided by a teacher or oracle. In this case: images for which we know the
object category.

e Representation Choose how to represent the data.

e Modeling Choose a hypothesis class - a set of possible explanations for the
connection between images and categories. This is our model of the problem.

e Estimation Find best hypothesis you can in the chosen class.

e Model selection We may reconsider the class of hypotheses given the outcome.

Each of these steps can make or break the learning outcome.

11

Example2 : Document Classification

A few labeled web pages with categories: faculty, student, department, course
etc.

Need to automatically classify previously unseen web pages.
What would be good features to represent these data?

Feature selection methods allow us to select from a large set of features those
most helpful for the task.

12

Example 3: Binary Classification

y=+1 q

y=—1

o Representation as a vector:

= [0000000000 0000001100 0001111111 ... 0001100000]*

13

Modelling

e Examples are binary vectors of dimension d = 100:
[

= x = [0000000000 0000001100 0001111111 ... DDDIIUUUUU}T

e Labels are binary as well, y € {—1,+1}.

e We consider the following hypothesis class: § = sign (w - x)

T

The "hat” ~ means “estimated”. Dot product: w-x = w'x = Ef’zl W;T;

e This is a linear classifier (based on a linear combination of input components).
It defines a mapping from the data to labels.

14

Estimation

g = sign (s, w;z;)

T L2 :

e How can we set the parameter vector w using training data?

— Start with a random set of weights

— Iterate through the training data; for each (x,y), if the current classifier

makes a mistake, set

w; — w; + yx; foralli=1,...,d.

15

Estimation: mistake driven algorithm

Start with a random set of weights

Iterate through the training data; for each (x,y), if the current classifier makes

a mistake, set
w; — w; + yx; foralli=1,...,d.

Magnitude |w;| reflects importance (weight)of the i-th pixel.

— Negative w; means that i-th pixel being on suggests a 9;
— positive w; means it suggests a 4.

When do we stop?..

16

Evaluation

e We can see how well we can predict the labels in the training set:

=]
Ly

=] =] =] =]
[I in i
I T
1 1 1 1

Awg. error on entire training set
1

ul:l 2000 4000 000 =000 A0000 12000
fraining examples seen

=]
-

e Expect the average classification error to go down as we look at more examples.
Do we expect it to reach zero?

17

Supervised learning beyond classification

e Often the goal is not to classify a data point but to predict some quantitative
outcome. This is a regression problem.

e Suppose we want to predict gas mileage of a car based on some characteristics:
number of cylinders or doors, weight, horsepower, year etc.

2} Mozilla Firefox

Fi= Edt Uew &o Eookmats Took Help

. I :, z g X @ b feasencs ucl ediomiaarn fdat abasas)aubo-mogfautopd.daca Sl =n

L, o (5] dL e L e T LS. At L= L R o = T E L= =t i .

15.5 B 204.0 1zo.0o anez. 13. 17 e 1 Tamc watador”

14.8 B 351.0 152.0 4215, 12. 8 a1 "ford gran terine®

ZZ.0 o] ZES.O 10o.o JE33. 15.4 TE 1 "plymouth waliant"”

2Z.0 & 250.0 105.0 3353 14.5 & 1 "chevrolet nova'

z4.0 o] 200.0 B1.00 Jniz. 17.6 TE 1 "ford maverick”

22.8 & 232.0 o, oo 30BE. 17. 68 T& 1 "amc harnet”

29,0 i a5.00 H2.00 20325, 22.2 a1 "chevrolet chevette™ T

4.5 4 28.00 0. 00 2164, 22.1 e 1 "chevralet woody™

2.0 i a0, 00 70,00 1037, 14.2 a2 "yw rabbit”

23,0 4 a1.00 53.00 1705, 17. 4 e 3 "honds oivic”

20,0 =] 225.0 00,0 da5l. 17.7 a1 "dodge aspan sa”

lg.0d & Z50.0 Ta.00 3574, Z1.0 e 1 "ford granada ghia"

<1:3.5 =] 250.0 110.0 dmth. 16,2 7a 1 "pontiac ventura =" b
>

B Find:) Fnd Bext 2 FrdPrevios (=] Hghlghe [Mstch case

Dane

18

Regression

e Let us look at MPG (miles per gallon) as a function of horsepower only.

e We can fit a straight line to try and explain this behavior:

LR R
-

y =]
Bl v
R
e ARAEEEERTT
SRR |

PG
T

19

Regression

e We can try to fit a quadratic function: § = wax? + wix + wy.

20

Generalization

e The ultimate goal is to do as well as possible on new, unseen data (a test set).
e We only have access to labels (“ground truth™) for the training set.

e There is a danger of overfitting: learning to predict training labels very well that
does not generalize!

e \What can we do about it?

— The most naive approach: minimize training error and keep our fingers
crossed.

— A somewhat more clever approach: if we have enough training data, set some
of it aside (holdout) and test on it once learning is done.

— There are much more powerful, sophisticated and rigorous methods that we
will study in this class.

21

Unsupervised Learning

|
e In unsupervised learning the goal is not to predict labels, but to learn some sort

of structure in the data.

— No labels involved!

e Typical problem: clustering.

|||||

Duraan {rmin)
%] x

the Old Faithful data

L -] 'II L
Walting time [min)

22

Example

e Goal of clustering: discover coherent groups (“clumps”) of data.

Duratan {mén)
+
+

111111

" waltng thme min)

e Common applications: clustering documents, image segmentation (clustering
pixels), activity discovery.

More unsupervised learning

e Other unsupervised tasks:

— Compression and dimensionality reduction: finding a more parsimonious
description for the data (e.g. coding).

— Detection of outliers/anomalies.

— Finding correlations between groups of variables.

e The objective is often more vague or subjective than in supervised learning. This
is more of an exploratory/descriptive data analysis.

24

Other learning scenarios

o Semi-supervised learning: lots of data available, but only small portion is labeled
(e.g. since labeling is expensive).

— Use unlabeled data to improve learning from the few labeled examples.

e Reinforcement learning: action-reward settings.

— the goal is to find a sequence of actions that maximize expected reward.
— Probably out of scope of this class...

25

eslia- !

mo- m9- oY

Defining the Learning Task

Improve on task, T, with respect to
performance metric, P, based on experience, E.

: Playing checkers

Percentage of games won against an arbitrary opponent

: Playing practice games against itself

: Recognizing hand-written words

Percentage of words correctly classified

: Database of human-labeled images of handwritten words

: Driving on four-lane highways using vision sensors
: Average distance traveled before a human-judged error
: A sequence of images and steering commands recorded while

observing a human driver.

: Categorize email messages as spam or legitimate.
: Percentage of email messages correctly classified.
: Database of emails, some with human-given labels

26

Designing a Learning System

Choose the training experience

Choose exactly what 1s too be learned, 1.e. the
target function.

Choose how to represent the target function.

Choose a learning algorithm to infer the target
function from the experience.

Environment/
Experience

Knowledge

27

Sample Learning Problem

» Learn to play checkers from self-play

* We will develop an approach analogous to
that used 1n the first machine learning

system developed by Arthur Samuels at
IBM in 1959.

28

Training Experience

* Direct experience: Given sample mput and output
pairs for a useful target function.
— Checker boards labeled with the correct move, e.g.
extracted from record of expert play

 Indirect experience: Given feedback which 1s not
direct I/O pairs for a useful target function.

— Potentially arbitrary sequences of game moves and their
final game results.
* Credit/Blame Assignment Problem: How to assign
credit blame to individual moves given only
indirect feedback?

29

Source of Training Data

Provided random examples outside of the learner’s
control.

— Negative examples available or only positive?

Good training examples selected by a “benevolent
teacher.”
— “Near miss” examples

Learner can query an oracle about class of an
unlabeled example 1n the environment.

Learner can construct an arbitrary example and
query an oracle for its label.

Learner can design and run experiments directly
in the environment without any human guidance.

30

Training vs. Test Distribution

* Generally assume that the training and test
examples are independently drawn from the
same overall distribution of data.

— IID: Independently and i1dentically distributed

 If examples are not independent, requires
collective classification.

» If test distribution is different, requires
transfer learning.

31

Choosing a Target Function

* What function 1s to be learned and how will 1t be
used by the performance system?

* For checkers, assume we are given a function for
generating the legal moves for a given board position
and want to decide the best move.

— Could learn a function:
ChooseMove(board, legal-moves) — best-move

— Or could learn an evaluation function, V(board) — R, that
gives each board position a score for how favorable it 1s. V
can be used to pick a move by applying each legal move,
scoring the resulting board position, and choosing the
move that results in the highest scoring board position.

32

Ideal Definition of V(b)

Ifbis a fina

If b is a final

If b is a final

| winning board, then V(b) = 100
| losing board, then V(b) =-100
| draw board, then V(b) =0

Otherwise, t!

hen V(b) =V(b"), where b” is the

highest scoring final board position that 1s achieved
starting from b and playing optimally until the end

of the game
optimally as

(assuming the opponent plays
well).

— Can be computed using complete mini-max search of the
finite game tree.

33

Approximating V(b)

Computing V(b) is intractable since it
involves searching the complete exponential
game ftree.

Therefore, this definition 1s said to be non-
operational.

An operational definition can be computed
in reasonable (polynomial) time.

Need to learn an operational approximation
to the 1deal evaluation function.

34

Representing the Target Function

» Target function can be represented 1n many ways:
lookup table, symbolic rules, numerical function,
neural network.

* There 1s a trade-off between the expressiveness of
a representation and the ease of learning.

* The more expressive a representation, the better it
will be at approximating an arbitrary function;
however, the more examples will be needed to
learn an accurate function.

35

Linear Function for Representing V(D)

 In checkers, use a linear approximation of the
evaluation function.
V(b) =w, +w, -bp(b)+w, - rp(b) +w, -bk(b) + w, - rk(b) + w, - bt(b) + w, - rt(b)
— bp(b): number of black pieces on board b
— rp(b): number of red pieces on board b
— bk(b): number of black kings on board b
— rk(b): number of red kings on board b

— bt(b): number of black pieces threatened (i.e. which can
be immediately taken by red on its next turn)

— 1t(b): number of red pieces threatened

36

Obtaining Training Values

 Direct supervision may be available for the
target function.

— < <bp=3,rp=0,bk=1,rk=0,bt=0,rt=0>, 100>
(win for black)

» With indirect feedback, training values can
be estimated using temporal difference
learning (used in reinforcement learning
where supervision is delayed reward).

37

Temporal Difference Learning

 Estimate training values for intermediate (non-
terminal) board positions by the estimated value of
their successor 1n an actual game trace.

V,.... (0) =V (successor(b))

where successor(b) is the next board position
where 1t 1s the program’s move 1n actual play.

* Values towards the end of the game are initially
more accurate and continued training slowly
“backs up” accurate values to earlier board
positions.

38

Learning Algorithm

» Uses training values for the target function to
induce a hypothesized definition that fits these
examples and hopefully generalizes to unseen
examples.

* In statistics, learning to approximate a continuous
function is called regression.

 Attempts to minimize some measure of error (I0Ss
function) such as mean squared error:

Z[Vtrain (b) _V(b)]z
E = beB
B

39

Least Mean Squares (LMS) Algorithm

A gradient descent algorithm that incrementally
updates the weights of a linear function in an
attempt to minimize the mean squared error

Until weights converge :
For each training example b do :
1) Compute the absolute error :
error(b)=V,...(b) -V (b)
2) For each board feature, f;, update its weight, w; :
W, =W, +C- f, -error(b)

for some small constant (learning rate) c

rain

40

[LMS Discussion

* Intuitively, LMS executes the following rules:
— If the output for an example 1s correct, make no change.

— If the output 1s too high, lower the weights proportional
to the values of their corresponding features, so the
overall output decreases

— If the output is too low, increase the weights
proportional to the values of their corresponding
features, so the overall output increases.

* Under the proper weak assumptions, LMS can be
proven to eventetually converge to a set of weights
that minimizes the mean squared error.

41

Lessons Learned about Learning

* Learning can be viewed as using direct or indirect
experience to approximate a chosen target
function.

* Function approximation can be viewed as a search
through a space of hypotheses (representations of
functions) for one that best fits a set of training
data.

 Different learning methods assume different
hypothesis spaces (representation languages)
and/or employ different search techniques.

42

Various Function Representations

Numerical functions

— Linear regression

— Neural networks

— Support vector machines
Symbolic functions

— Decision trees

— Rules in propositional logic

Rules in first-order predicate logic

Instance-based functions

Nearest-neighbor
Case-based

Probabilistic Graphical Models

Naive Bayes

Bayesian networks
Hidden-Markov Models (HMMs)
Markov networks

43

Various Search Algorithms

* Gradient descent
— Perceptron
— Backpropagation
* Dynamic Programming
— HMM Learning
* Divide and Conquer
— Decision tree induction
— Rule learning
* Evolutionary Computation
— Genetic Algorithms (GAs)
— Genetic Programming (GP)

44

Evaluation of Learning Systems

* Experimental

— Conduct controlled cross-validation experiments to compare
various methods on a variety of benchmark datasets.

— Gather data on their performance, e.g. test accuracy, training-time,
testing-time.
— Analyze differences for statistical significance.

* Theoretical
— Analyze algorithms mathematically and prove theorems about
their:
« Computational complexity
 Ability to fit training data

» Sample complexity (number of training examples needed to learn an
accurate function)

45

History of Machine Learning

1950s

— Samuel’s checker player
— Selfridge’s Pandemonium

1960s:

— Neural networks: Perceptron

— Pattern recognition

— Learning in the limit theory

— Minsky and Papert prove limitations of Perceptron

1970s:

— Symbolic concept induction

— Winston’s arch learner

— Expert systems and the knowledge acquisition bottleneck
— Quinlan’s ID3

— Michalski’s AQ and soybean diagnosis

— Scientific discovery with BACON

— Mathematical discovery with AM

46

History of Machine Learning (cont.)

1980s:

— Advanced decision tree and rule learning

— Explanation-based Learning (EBL)

— Learning and planning and problem solving

— Utility problem

— Analogy

— Cognitive architectures

— Resurgence of neural networks (connectionism, backpropagation)
— Valiant’s PAC Learning Theory

Focus on experimental methodology

1990s
— Data mining
— Adaptive software agents and web applications
— Text learning
— Reinforcement learning (RL)
— Inductive Logic Programming (ILP)
— Ensembles: Bagging, Boosting, and Stacking
— Bayes Net learning

47

History of Machine Learning (cont.)

2000s

— Support vector machines

— Kernel methods

— @Graphical models

— Statistical relational learning

— Transfer learning

— Sequence labeling

— Collective classification and structured outputs

— Computer Systems Applications

« Compilers

* Debugging

» Graphics

* Security (intrusion, virus, and worm detection)
— Email management
— Personalized assistants that learn

— Learning in robotics and vision

48

