Decision Tree

Example 1

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Example 1 – Decision Tree

Decision Tree Example Three variables:

- - Hair = {blond, dark}
 - Height = {tall,short}
 - Country = {Gromland, Polvia}

Example 3

How to choose the attribute/value to split on at each level of the tree?

- Two classes (red circles/green crosses)
- Two attributes: X₁ and X₂
- 11 points in training data
- Idea

 Construct a decision tree such that the leaf nodes predict correctly the class for all the training examples

Example 2 – Attribute Selection

How to choose the attribute/value to split on at each level of the tree?

Bad

Good

Example 2 – Attribute Selection

Digression: Information Content

- Suppose that we are dealing with data which can come from four possible values (A, B, C, D)
- Each class may appear with some probability
- Suppose P(A) = P(B) = P(C) = P(D) = 1/4
- What is the average number of bits necessary to encode each class?
- In this case: average = 2 = 2xP(A)+2xP(B)+2xP(C)+2xP(D)
 A → 00 B → 01 C → 10 D → 11

Information Content

- Suppose now P(A) = 1/2 P(B) = 1/4 P(C) = 1/8 P(D) = 1/8
- What is the average number of bits necessary to encode each class?
- In this case, the classes can be encoded by using 1.75 bits on average
- A \rightarrow 0 B \rightarrow 10 C \rightarrow 110 D \rightarrow 111
- Average

$$= 1xP(A)+2xP(B)+3xP(C)+3xP(D) = 1.75$$

Entropy

 In general, the average number of bits necessary to encode n values is the entropy:

$$\boldsymbol{H} = -\sum_{i=1}^{n} -\boldsymbol{P}_{i} \log_{2} \boldsymbol{P}_{i}$$

- P_i = probability of occurrence of value i
 - High entropy -> All the classes are (nearly) equally likely
 - Low entropy -> A few classes are likely; most of the classes are rarely observed

Example Entropy Calculation

$$N_A = 1$$

 $N_B = 6$
 $p_A = N_A/(N_A + N_B) = 1/7$
 $p_B = N_B/(N_A + N_B) = 6/7$

$$N_A = 1$$
 $N_A = 3$
 $N_B = 6$ $N_B = 2$
 $p_A = N_A/(N_A + N_B) = 1/7$ $p_A = N_A/(N_A + N_B) = 3/5$
 $p_B = N_B/(N_A + N_B) = 6/7$ $p_B = N_B/(N_A + N_B) = 2/5$

$$H_1 = -p_A \log_2 p_A - p_B \log_2 p_B$$
 $H_2 = -p_A \log_2 p_A - p_B \log_2 p_B$
= 0.59 = 0.97

$$H_1 < H_2 => (2)$$
 less pure than (1)

$$H_1 = -p_A \log_2 p_A - p_B \log_2 p_B$$
 $H_2 = -p_A \log_2 p_A - p_B \log_2 p_B$
= 0.59 = 0.97

$$H_1 < H_2 => (2)$$
 less pure than (1)

Conditional Entropy

Entropy before splitting: H

After splitting, a fraction P_L of the data goes to the left node, which has entropy H_L

After splitting, a fraction P_R of the data goes to the left node, which has entropy H_R

The average entropy after splitting is:

$$H_L \times P_L + H_R \times P_R$$

Information Gain

We want nodes as pure as possible

- →We want to reduce the entropy as much as possible
- → We want to maximize the difference between the entropy of the parent node and the expected entropy of the children

Maximize:

$$IG = H - (H_L \times P_L + H_R \times P_R)$$

Example 2 – Attribute Selection

Example 2 – Information Gain

Example 1 – Revisited

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Example 2 – Information Gain

$$Values(Wind) = Weak, Strong$$

 $S = [9+, 5-]$
 $S_{Weak} \leftarrow [6+, 2-]$
 $S_{Strong} \leftarrow [3+, 3-]$

$$Gain(S, Wind) = Entropy(S) - (8/14)Entropy(S_{Weak})$$

- $(6/14)Entropy(S_{Strong})$
= $0.940 - (8/14)0.811 - (6/14)1.00$
= 0.048

Example 2 – Information Gain

