
slide 1

Constraint Satisfaction
Problems

Xiaojin Zhu
jerryzhu@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Partly based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials , and Russell & Norvig]

Administrator
Rectangle

Administrator
Rectangle

slide 2

We’ve seen CSP before!

• Constraint satisfaction problem (CSP) is a special
class of search problem

• Each problem has a set of variables (e.g. A,B,C,D,E)

• Each variable take a value from a domain (e.g. {T,F})

• Each problem has a set of constraints (e.g A  B  C=T)

• Objective: find a complete assignment of variables that
satisfies all the constraints.

• What are v/v/d/c of 8-queen? Map coloring?

A  B  C
A  C  D
B  D  E
¬C   D   E
¬A   C  E

Administrator
Rectangle

Administrator
Cross-Out

Administrator
Cross-Out

Administrator
Cross-Out

Administrator
Cross-Out

Administrator
Rectangle

slide 3

CSP definition

• CSP is a triplet {V, D, C}

• V = {V1, V2, …, Vn} a finite set of variables

• Each variable may be assigned a value from domain Di

• Each member of C is a pair

 First member: a subset of variables

 Second member: a set of valid values

• Example:

V = {V1, V2, …, V7}

D = {R, G, B}

C = { (V1, V2):{(R,G), (R,B), (G,B), (G,R), (B,G), (B,R)},

 (V1, V3):{(R,G), (R,B), (G,B), (G,R), (B,G), (B,R)},

 …

 } (obvious point: C is often represented as a function)

• How did we solve this?

slide 5

Old solution #2: BFS, DFS, …

• State: partial assignment. (V1…Vk-1 assigned, Vk…Vn
not yet).

• Start state: all variables unassigned

• Goal state: all assigned, constraints satisfied

• Successor of (V1…Vk-1 assigned, Vk…Vn not yet):
assign Vk with a value from Dk

• Cost on transitions: 0 is fine. We don’t care. We just
want any solution.

slide 6

Map coloring example

?

• It turns out BFS is bad. Why?

V1

V2

slide 7

Map coloring example

?

• It turns out BFS is bad. Why? Goal @ search tree
leaf level.

• What are the successors above?

V1

V2

slide 8

Map coloring example

?

• It turns out BFS is bad. Why? Goal @ search tree leaf
level.

• What are the successors above?

• Let’s say for every variable the order of assignment is R,
G, B. There’s something wrong with DFS, can you see
why?

V1

V2

slide 9

Map coloring example

Shouldn’t search
anything down here!

There’s something wrong with DFS, can you see why?

slide 10

#1 Obvious improvement: backtracking search

• Succs() should check the constraints and not propose
a successor assignment that conflicts with other
already-assigned variables.

• ‘backtracking’ happens when no value is valid for that
successor.

instead of

Backtracking search

� � � � � �� � BACKTRACKING-SEARCH

�

csp

� 	
 � � 	 � � solution/failure

	
 � � 	 � RECURSIVE-BACKTRACKING([], csp)

� � � � � �� � RECURSIVE-BACKTRACKING

�

assigned � csp

� 	
 � � 	 � � solution/failure

� �

assigned

� � � � � �� � � � �
 � 	
 � � 	 � assigned

var← SELECT-UNASSIGNED-VARIABLE

�

VARIABLES

�

csp

� � assigned � csp

�

�� 	
 � � �

value

� � ORDER-DOMAIN-VALUES

�

var � assigned � csp

� ��

� �

value

� � � � �
� � � � � �
 � �

assigned

� � � � �
 � ! � � CONSTRAINTS

�

csp

� � �
 �

result← RECURSIVE-BACKTRACKING

�

[var = value|assigned] � csp

�

� �

result 6= failure

� �
 � 	
 � � 	 � result

	
 � � 	 � failure

Constraint Satisfaction Problems – 13

slide 11

Backtracking search example

Minimum remaining values (MRV)

♦ aka most constrained variable

♦ choose the variable with the fewest legal values
♦ most likely to cause early failure (prune the search tree)
♦ e.g. variable with 0 values should cause immediate failure

Constraint Satisfaction Problems – 17

Degree heuristic

♦ there can be many variables with the same number of values

♦ choose variable with most constraints on remaining variables
♦ reduces branching factor in future choices
♦ used as tie-breaker among most constrained variables

Constraint Satisfaction Problems – 18

Least constraining value

♦ given a variable, how to order the values to try

♦ choose the least constraining value
♦ maximum flexibility for assignments on other vars

Allows 1 value for SA

Allows 0 values for SA

♦ doesn’t matter if
♦ we’re looking for all the solutions, or
♦ there’s no solution

Constraint Satisfaction Problems – 19

slide 12

#2 Less obvious improvement: forward checking

• Keep a list of candidate values for each unassigned
variable.

• After assigning Vi=v, cross out conflicting candidates
in other unassigned variables.

• If any unassigned variable’s candidate list becomes
empty, backtrack immediately.

slide 13

Less obvious: forward checking

• Keep a list of candidate values for each unassigned
variable.

• After assigning Vi=v, cross out conflicting candidates
in other unassigned variables.

• If any unassigned variable’s candidate list becomes
empty, backtrack immediately.

slide 14

Less obvious: forward checking

• Keep a list of candidate values for each unassigned
variable.

• After assigning Vi=v, cross out conflicting candidates
in other unassigned variables.

• If any unassigned variable’s candidate list becomes
empty, backtrack immediately.

slide 15

Less obvious: forward checking

• Keep a list of candidate values for each unassigned
variable.

• After assigning Vi=v, cross out conflicting candidates
in other unassigned variables.

• If any unassigned variable’s candidate list becomes
empty, backtrack immediately. SA may not be the next

variable we assign. Thus
backtracking search has

slower response than
forward checking.

slide 16

#3 Not obvious: constraint propagation

• Can NSW have the candidate value ‘B’?

• Suppose NSW=B, would this cause problem for
another unassigned variable?

slide 17

#3 Not obvious: constraint propagation

• Can NSW have the candidate value ‘B’?

• Suppose NSW=B, would this cause problem for another
unassigned variable? Yes! SA has no value to avoid a conflict!

• Because SA is not accommodating, we have to remove B from
NSW’s candidates.

slide 18

#3 Not obvious: constraint propagation

• Can NSW have the candidate value ‘B’?

• Suppose NSW=B, would this cause problem for another
unassigned variable? Yes! SA has no value to avoid a conflict!

• Because SA is not accommodating, we have to remove B from
NSW’s candidates.

• But this makes NSW less accommodating. Another variable
might lose a candidate value because of NSW now.

• That variable becomes less accommodating. And so on…

slide 19

Constraint propagation

• After the dust settles, the candidate lists should be
smaller (or at worst the same)

• If a variable loses all its candidates during this
process, the current (partial) assignment is invalid, and
we backtrack.

Constraint propagation
detects failure one
expansion earlier than
forward checking, in this
example.

Arc consistency algorithm

� � � � � �� � AC-3

�

csp

� 	
 � � 	 � � � �� " # $ � � �� �
 % �& �
 � � �� ' �� � � �
 ��

� � (� � �) csp � � %
 � � �& " # $ �
 � �* � �
 � % �� � {X1, X2, . . . , Xn}+� � � + , � 	 � � - +
 �) queue � � .' � ' � � / � � �� �
 �
 �
 � � � & � � � � �� � � ��
 � csp

0 � � +
 queue

 � � � � � � � �& ��

(Xi, Xj)← REMOVE-FIRST

�

queue

�

� �

REMOVE-INCONSISTENT-VALUES

�

Xi, Xj

� � �
 �

�� 	 � + + Xk

� � NEIGHBORS

�

Xi

� ��

� �

Xk, Xi

� � �

queue

� � � � � �� � REMOVE-INCONSISTENT-VALUES

�

Xi, Xj
� 	
 � � 	 � � � �' � 1 / � �� �

removed← false

�� 	 � + + x

� � DOMAIN

�

Xi

� ��

� �

(¬∃y ∈ DOMAIN[Xj]

�2 �2 (x , y) ∈ � � �� � � �
 � � (Xi, Xj))

� �
 �

 � � � � �

x

/ � � � DOMAIN

�

Xi
�3 removed← true

	
 � � 	 � removed

AC-3 called as preprocessing or after each assignment

Constraint Satisfaction Problems – 23

slide 20

Constraint propagation

• This is called arc consistency

• This is also known as 2-consistency. More generally
k-consistency requires that

• More powerful, but exponentially more expensive to
check. When k=n by definition it gives us the CSP
solution!

For all groups of k variables, for all consistent
combination of candidate values of the first k-1
variables, we can find a consistent candidate
value for the kth variable.

slide 24

What you should know

• How to formalize problems as CSP

• Backtracking search, forward checking, constraint
propagation

• Variable ordering and value ordering

• Stochastic search for CSP

Administrator
Rectangle

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2, , }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

