Artificial Intelligence,
MASIab, Department of Computer Engineering, MAS
University of Zanjan

PH #1: Search

Introduction

In this project, your Pacman agent will find paths through his maze world, both to reach a particular
location and to collect food efficiently. You will build general search algorithms and apply them to
Pacman scenarios. As in PH #0, this project includes an autograder for you to grade your answers on
your machine. This can be run with the command:

> python autograder.py

The code for this project consists of several Python files, some of which you will need to read and
understand in order to complete the assignment, and some of which you can ignore. You can
download all the code and supporting files as a PH_1_Search.zip.

Files you will edit:

e search.py - Where all of your search algorithms will reside.
e searchAgents.py - Where all of your search-based agents will reside.

Files to Edit and Submit: You will fill in portions of search.py and searchAgents.py during the
assignment. You should submit these files with your code and comments. Please do not change the
other files in this distribution or submit any of our original files other than these files.

Evaluation: Your code will be autograded for technical correctness. Please do not change the names
of any provided functions or classes within the code, or you will wreak havoc on the autograder.
However, the correctness of your implementation -- not the autograder's judgements -- will be the
final judge of your score. If necessary, we will review and grade assignments individually to ensure
that you receive due credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in the class for
logical redundancy. If you copy someone else's code and submit it with minor changes, we will know.
These cheat detectors are quite hard to fool, so please don't try. We trust you all to submit your own
work only; please don't let us down. If you do, we will pursue the strongest consequences available to
us.

Note. If you see other Questions (i.e. 5, 6, 7, and 8) please ignore them.



Artificial Intelligence,
MASIab, Department of Computer Engineering, MAS
University of Zanjan

Welcome to Pacman

After downloading the code (search.zip), unzipping it, and changing to the directory, you should be
able to play a game of Pacman by typing the following at the command line:

> python pacman.py

Pacman lives in a shiny blue world of twisting corridors and tasty round treats. Navigating this world
efficiently will be Pacman's first step in mastering his domain. The simplest agent in searchAgents.py
is called the GoWestAgent, which always goes West (a trivial reflex agent). This agent can occasionally
win:

> python pacman.py --layout testMaze --pacman GoWestAgent

But, things get ugly for this agent when turning is required:

> python pacman.py --layout tinyMaze --pacman GoWestAgent

If Pacman gets stuck, you can exit the game by typing CTRL-c into your terminal.
Soon, your agent will solve not only tinyMaze, but any maze you want.

Note that pacman.py supports a number of options that can each be expressed in a long way (e.g.,
--layout) or a short way (e.g., -I). You can see the list of all options and their default values via:

> python pacman.py -h

Also, all of the commands that appear in this project also appear in commands.txt, for easy copying
and pasting. In UNIX/Mac OS X, you can even run all these commands in order with bash
commands.txt.

Question 1: Finding a Fixed Food Dot using Depth First Search

In searchAgents.py, you'll find a fully implemented SearchAgent, which plans out a path through
Pacman's world and then executes that path step-by-step. The search algorithms for formulating a
plan are not implemented -- that's your job.

First, test that the SearchAgent is working correctly by running:
> python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch

The command above tells the SearchAgent to use tinyMazeSearch as its search algorithm, which is
implemented in search.py. Pacman should navigate the maze successfully.



Artificial Intelligence,
MASIab, Department of Computer Engineering, MAS
University of Zanjan

Now it's time to write full-fledged generic search functions to help Pacman plan routes! Pseudocode for
the search algorithms you'll write can be found in the lecture slides. Remember that a search node
must contain not only a state but also the information necessary to reconstruct the path (plan) which
gets to that state.

Important note: All of your search functions need to return a list of actions that will lead the agent
from the start to the goal. These actions all have to be legal moves (valid directions, no moving
through walls).

Important note: Make sure to use the Stack, Queue and PriorityQueue data structures provided to
you in util.py! These data structure implementations have particular properties which are required for
compatibility with the autograder.

Hint: Each algorithm is very similar. Algorithms for DFS, BFS, UCS, and A* differ only in the details of
how the fringe is managed. So, concentrate on getting DFS right and the rest should be relatively
straightforward. Indeed, one possible implementation requires only a single generic search method
which is configured with an algorithm-specific queuing strategy. (Your implementation need not be of
this form to receive full credit).

Implement the depth-first search (DFS) algorithm in the depthFirstSearch function in search.py. To
make your algorithm complete, write the graph search version of DFS, which avoids expanding any
already visited states.

Your code should quickly find a solution for:

> python pacman.py -l tinyMaze -p SearchAgent

> python pacman.py -I mediumMaze -p SearchAgent
> python pacman.py -l bigMaze -z .5 -p SearchAgent

The Pacman board will show an overlay of the states explored, and the order in which they were
explored (brighter red means earlier exploration). Is the exploration order what you would have
expected? Does Pacman actually go to all the explored squares on his way to the goal?

Hint: If you use a Stack as your data structure, the solution found by your DFS algorithm for
mediumMaze should have a length of 130 (provided you push successors onto the fringe in the order
provided by getSuccessors; you might get 246 if you push them in the reverse order). Is this a least
cost solution? If not, think about what depth-first search is doing wrong.

Question 2: Breadth First Search

Implement the breadth-first search (BFS) algorithm in the breadthFirstSearch function in search.py.
Again, write a graph search algorithm that avoids expanding any already visited states. Test your code
the same way you did for depth-first search.



Artificial Intelligence,
MASIab, Department of Computer Engineering, MAS
University of Zanjan

> python pacman.py -l mediumMaze -p SearchAgent -a fn=Dbfs
> python pacman.py -l bigMaze -p SearchAgent -a fn=bfs -z .5

Does BFS find a least cost solution? If not, check your implementation.
Hint: If Pacmman moves too slowly for you, try the option --frameTime 0.

Note: If you've written your search code generically, your code should work equally well for the
eight-puzzle search problem without any changes.

> python eightpuzzle.py
Question 3: Varying the Cost Function

While BFS will find a fewest-actions path to the goal, we might want to find paths that are "best" in
other senses. Consider mediumDottedMaze and mediumScaryMaze.

By changing the cost function, we can encourage Pacman to find different paths. For example, we can
charge more for dangerous steps in ghost-ridden areas or less for steps in food-rich areas, and a
rational Pacman agent should adjust its behavior in response.

Implement the uniform-cost graph search algorithm in the uniformCostSearch function in search.py.
We encourage you to look through util.py for some data structures that may be useful in your
implementation. You should now observe successful behavior in all three of the following layouts,
where the agents below are all UCS agents that differ only in the cost function they use (the agents
and cost functions are written for you):

> python pacman.py -I mediumMaze -p SearchAgent -a fn=ucs
> python pacman.py -l mediumDottedMaze -p StayEastSearchAgent
> python pacman.py -I mediumScaryMaze -p StayWestSearchAgent

Note: You should get very low and very high path costs for the StayEastSearchAgent and
StayWestSearchAgent respectively, due to their exponential cost functions (see searchAgents.py for
details).



Artificial Intelligence,
MASIab, Department of Computer Engineering, MAS
University of Zanjan

Question 4: A* search

Implement A* graph search in the empty function aStarSearch in search.py. A* takes a heuristic
function as an argument. Heuristics take two arguments: a state in the search problem (the main
argument), and the problem itself (for reference information). The nullHeuristicheuristic function in
search.py is a trivial example.

You can test your A* implementation on the original problem of finding a path through a maze to a
fixed position using the Manhattan distance heuristic (implemented already as manhattanHeuristic in
searchAgents.py).

> python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic

You should see that A* finds the optimal solution slightly faster than uniform cost search (about 549
vs. 620 search nodes expanded in our implementation, but ties in priority may make your numbers
differ slightly). What happens on openMaze for the various search strategies?



